本文目录一览:
MySQL查询效率很慢的问题如何分析和解决
MySQL 在崩溃恢复时,会遍历打开所有 ibd 文件的 header page 验证数据字典的准确性,如果 MySQL 中包含了大量表,这个校验过程就会比较耗时。 MySQL 下崩溃恢复确实和表数量有关,表总数越大,崩溃恢复时间越长。另外磁盘 IOPS 也会影响崩溃恢复时间,像这里开发库的 HDD IOPS 较低,因此面对大量的表空间,校验速度就非常缓慢。另外一个发现,MySQL 8 下正常启用时居然也会进行表空间校验,而故障恢复时则会额外再进行一次表空间校验,等于校验了 2 遍。不过 MySQL 8.0 里多了一个特性,即表数量超过 5W 时,会启用多线程扫描,加快表空间校验过程。
如何跳过校验MySQL 5.7 下有方法可以跳过崩溃恢复时的表空间校验过程嘛?查阅了资料,方法主要有两种:
1. 配置 innodb_force_recovery可以使 srv_force_recovery != 0 ,那么 validate = false,即可以跳过表空间校验。实际测试的时候设置 innodb_force_recovery =1,也就是强制恢复跳过坏页,就可以跳过校验,然后重启就是正常启动了。通过这种临时方式可以避免崩溃恢复后非常耗时的表空间校验过程,快速启动 MySQL,个人目前暂时未发现有什么隐患。2. 使用共享表空间替代独立表空间这样就不需要打开 N 个 ibd 文件了,只需要打开一个 ibdata 文件即可,大大节省了校验时间。自从听了姜老师讲过使用共享表空间替代独立表空间解决 drop 大表时性能抖动的原理后,感觉共享表空间在很多业务环境下,反而更有优势。
临时冒出另外一种解决想法,即用 GDB 调试崩溃恢复,通过临时修改 validate 变量值让 MySQL 跳过表空间验证过程,然后让 MySQL 正常关闭,重新启动就可以正常启动了。但是实际测试发现,如果以 debug 模式运行,确实可以临时修改 validate 变量,跳过表空间验证过程,但是 debug 模式下代码运行效率大打折扣,反而耗时更长。而以非 debug 模式运行,则无法修改 validate 变量,想法破灭。
MySQL删除千万级数据量导致的慢查询优化
有人删了千万级的数据,结果导致频繁的慢查询。
线上收到大量慢查询告警,于是检查慢查询的SQL,发现不是啥复杂SQL,这些SQL主要针对一个表,基本都是单行查询,看起来应该不会有慢查询。这种SQL基本上都是直接根据索引查找出来的,性能应该极高。
是否可能慢查询不是SQL问题,而是MySQL生产服务器的问题?特殊情况下,MySQL出现慢查询还真不是SQL问题,而是他自己生产服务器的负载太高,导致SQL语句执行慢。比如现在MySQL服务器的
磁盘I/O负载高,每秒执行大量高负载的随机I/O,但磁盘本身每秒能执行的随机I/O有限,导致正常SQL在磁盘执行时,若跑一些随机IO,你的磁盘太忙,顾不上你了,导致你本来很快的一个SQL,要等很久才能执行完毕,这时就可能导致正常SQL也变成慢查询。
也许网络负载高,导致你一个SQL语句要发到MySQL,光是等待获取一个和MySQL的连接,都很难,要等很久或MySQL自己网络负载太高,带宽打满,带宽打满后,你一个SQL也许执行很快,但其查出来的数据返回给你,网络都送不出去,也会变成慢查询。
若CPU负载过高,也会导致CPU过于繁忙去执行别的任务,没时间执行你的SQL。
所以慢查询不一定是SQL本身导致,若觉得SQL不应该会慢查询,结果他那个时间段跑这个SQL 就是慢,应排查当时MySQL服务器的负载,尤其看看磁盘、网络及 CPU 的负载,是否正常。
当某个离线作业瞬间大批量把数据往MySQL里灌入的时,他一瞬间服务器磁盘、网络以及CPU的负载会超高。
此时你一个正常SQL执行下去,短时间内一定会慢查询,类似问题,优化手段更多是控制你导致MySQL负载过高的那些行为,比如灌入大量数据,最好在业务低峰期灌入,别影响高峰期的线上系统运行。
但看了下MySQL服务器的磁盘、网络以及CPU负载,一切正常,似乎也不是这问题导致。看起来无解了?
慢 SQL 的头两步排查手段:
这两种办法都不奏效之后,第三步:用MySQL profilling工具去细致的分析SQL语句的执行过程和耗时。
这个工具可以对SQL语句的执行耗时进行非常深入和细致的分析
打开profiling,使用
接着MySQL就会自动记录查询语句的profiling信息。此时若执行show profiles,就会给你列出各种查询语句的profiling信息,会记录下来每个查询语句的query id,所以你要针对你需要分析的query找到对他的query id,我们当时就是针对慢查询的那个SQL语句找到了query id。
然后针对单个查询语句,看其profiling信息,使用show profile cpu, block io for query xx,这里的xx是数字,此时就可以看到具体的profile信息。
除了cpu以及block io以外,还能指定去看这个SQL语句执行时候的其他各项负载和耗时。
会给你展示出来SQL语句执行时候的各种耗时,比如磁盘IO的耗时,CPU等待耗时,发送数据耗时,拷贝数据到临时表的耗时等,SQL执行过程中的各种耗时都会展示。
检查该SQL语句的profiling信息后,发现问题,其Sending Data耗时最高,几乎使用1s,占据SQL执行耗时的99%!其他环节耗时低可以理解,毕竟这种简单SQL执行速度真的很快,基本就是10ms级别,结果跑成1s,那肯定Sending Data就是问题根源!
这Sending Data在干啥呢?
MySQL官方释义:为一个SELECT语句读取和处理数据行,同时发送数据给客户端的过程,简单来说就是为你的SELECT语句把数据读出来,同时发送给客户端。
但这过程为啥这么慢?profiling确实是提供给我们更多的线索了,但似乎还是没法解决问题。但已经捕获到异常关键点,就是Sending Data的耗时很高!
接着:
看innodb存储引擎的一些状态,此时发现一个奇怪的指标:history list length,值特别高,达到上万。
MVCC就是多个事务在对同一个数据, 有人写,有人读,此时可以有多种隔离级别,对一个数据有个多版本快照链条,才能实现MVCC和各种隔离级别。
所以当你有大量事务执行时,就会构建这种undo多版本快照链条,此时history list length就会很高。然后在事务提交后,会有一个多版本快照链条的自动purge清理机制,清理了,该值就会降低。一般该值不应过高,所以注意到第二个线索:history list length过高,即大量的undo多版本链条数据没有清理。推测可能有的事务长时间运行,所以其多版本快照不能被purge清理,进而导致history list length过高。
经过这俩线索推测,在大量简单SQL变成慢查询时,SQL因为Sending Data环节异常,耗时过高;同时此时出现一些长事务长时间运行,大量的频繁更新数据,导致有大量undo多版本快照链条,还无法purge清理。
因为发现有大量的更新语句在活跃,而且有那种长期活跃的长事务一直在跑而没有结束,问了下系统负责人,在后台跑了个定时任务:他居然开了一个事务,然后在一个事务里删除上千万数据,导致该事务一直在运行。
这种长事务的运行会导致你删除时,仅只是对数据加了一个删除标记,事实上并没有彻底删除。此时你若和长事务同时运行的其它事务里再查询,他在查询时可能会把那上千万被标记为删除的数据都扫描一遍。因为每次扫描到一批数据,都发现标记为删除了,接着就会再继续往下扫描,所以才导致一些查询语句很慢。
那为何你启动一个事务,在事务里查询,凭什么就要去扫描之前那个长事务标记为删除状态的上千万的垃圾数据?讲道理,那些数据都被删了,跟你没关系了呀,你可以不去扫描他们 嘛!
而问题症结在于,那个 删除千万级数据的事务是个长事务 !即当你启动新事务查询时,那个删除千万级数据的长事务一直在运行,它是活跃的!结合MVCC的Read View机制,当你启动一个新事务查询时,会生成一个Read View。你的新事务查询时,会根据ReadView去判断哪些数据可见及可见的数据版本号,因为每个数据都有个版本链条,有时你能可见的仅是这个数据的一个 历史 版本。
所以正是因为该长事务一直在运行,还在删除大量数据,而且这些数据仅是逻辑删除,所以此时你新开事务的查询还是会读到所有逻辑删除数据,也就会出现千万级的数据扫描,导致了慢查询!
所以禁止在业务高峰期运行那种删除大量数据的语句,因为这可能导致一些正常的SQL都变慢查询,因为那些SQL也许会不断扫描你标记为删除的大量数据,好不容易扫描到一批数据,结果发现是标记为删除的,于是继续扫描下去,导致慢查询!
直接kill那个正在删除千万级数据的长事务,所有SQL很快恢复正常。此后,大量数据清理全部放在凌晨执行,那个时候就没什么人使用系统了,所以查询也很少。
mysql如何优化以下语句,查询耗时太久了?
根据所描述的问题,可尝试在mms_profitcenter 的FOrderID ,FSuffix列上建立索引,再查询试试。 下面提供30种mysql常用优化方法供参考:
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where 子句中使用!=或操作符,否则将引擎放弃使用索引而进行全表扫描。
3.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.下面的查询也将导致全表扫描:
select id from t where name like '%abc%'
若要提高效率,可以考虑全文检索。
6.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc'--name以abc开头的id
select id from t where datediff(day,createdate,'2005-11-30')=0--'2005-11-30'生成的id
应改为:
select id from t where name like 'abc%'
select id from t where createdate='2005-11-30' and createdate'2005-12-1'
10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(...)
13.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
30.尽量避免大事务操作,提高系统并发能力。
mysql 存储过程执行太慢怎么优化
1.当我们请求mysql服务器的时候,MySQL前端会有一个监听,请求到了之后,服务器得到相关的SQL语句,执行之前(虚线部分为执行),还会做权限的判断
2.通过权限之后,SQL就到MySQL内部,他会在查询缓存中,看该SQL有没有执行过,如果有查询过,则把缓存结果返回,说明在MySQL内部,也有一个查询缓存.但是这个查询缓存,默认是不开启的,这个查询缓存,和我们的Hibernate,Mybatis的查询缓存是一样的,因为查询缓存要求SQL和参数都要一样,所以这个命中率是非常低的(没什么卵用的意思)。
3.如果我们没有开启查询缓存,或者缓存中没有找到对应的结果,那么就到了解析器,解析器主要对SQL语法进行解析
4.解析结束后就变成一颗解析树,这个解析树其实在Hibernate里面也是有的,大家回忆一下,在以前做过Hibernate项目的时候,是不是有个一个antlr.jar。这个就是专门做语法解析的工具.因为在Hibernate里面有HQL,它就是通过这个工具转换成SQL的,我们编程语言之所以有很多规范、语法,其实就是为了便于这个解析器解析,这个学过编译原理的应该知道.
5.得到解析树之后,不能马上执行,这还需要对这棵树进行预处理,也就是说,这棵树,我没有经过任何优化的树,预处理器会这这棵树进行一些预处理,比如常量放在什么地方,如果有计算的东西,把计算的结果算出来等等...
6.预处理完毕之后,此时得到一棵比较规范的树,这棵树就是要拿去马上做执行的树,比起之前的那棵树,这棵得到了一些优化
7.查询优化器,是MySQL里面最关键的东西,我们写任何一条SQL,比如SELECT * FROM USER WHERE USERNAME = toby AND PASSWORD = 1,它会怎么去执行?它是先执行username = toby还是password = 1?每一条SQL的执行顺序查询优化器就是根据MySQL对数据统计表的一些信息,比如索引,比如表一共有多少数据,MySQL都是有缓存起来的,在真正执行SQL之前,他会根据自己的这些数据,进行一个综合的判定,判断这一次在多种执行方式里面,到底选哪一种执行方式,可能运行的最快.这一步是MySQL性能中,最关键的核心点,也是我们的优化原则.我们平时所讲的优化SQL,其实说白了,就是想让查询优化器,按照我们的想法,帮我们选择最优的执行方案,因为我们比MySQL更懂我们的数据.MySQL看数据,仅仅只是自己收集到的信息,这些信息可能是不准确的,MySQL根据这些信息选了一个它自认为最优的方案,但是这个方案可能和我们想象的不一样.
8.这里的查询执行计划,也就是MySQL查询中的执行计划,比如要先执行username = toby还是password = 1
9.这个执行计划会传给查询执行引擎,执行引擎选择存储引擎来执行这一份传过来的计划,到磁盘中的文件中去查询,这个时候重点来了,影响这个查询性能最根本的原因是什么?就是硬盘的机械运动,也就是我们平时熟悉的IO,所以一条查询语句是快还是慢,就是根据这个时间的IO来确定的.那怎么执行IO又是什么来确定的?就是传过来的这一份执行计划.(优化就是制定一个我们认为最快的执行方案,最节省IO,和执行最快)
10.如果开了查询缓存,则返回结果给客户端,并且查询缓存也放一份。