本文目录一览:
- 1、python的应用领域有哪些
- 2、Python 在编程语言中是什么地位?为什么很多大学不教 Python?
- 3、Python 从入门到精通推荐看哪些书籍呢?
- 4、Python 在编程语言中是什么地位?为什么很多大学不教 Python
- 5、python的应用领域有哪些?
python的应用领域有哪些
Python是一门简单、易学并且很有前途的编程语言,很多人都对Python感兴趣,但是当学完Python基础用法之后,又会产生迷茫,尤其是自学的人员,不知道接下来的Python学习方向,以及学完之后能干些什么?以下是Python十大应用领域!
1. WEB开发
Python拥有很多免费数据函数库、免费web网页模板系统、以及与web服务器进行交互的库,可以实现web开发,搭建web框架,目前比较有名气的Python web框架为Django。从事该领域应从数据、组件、安全等多领域进行学习,从底层了解其工作原理并可驾驭任何业内主流的Web框架。
2. 网络编程
网络编程是Python学习的另一方向,网络编程在生活和开发中无处不在,哪里有通讯就有网络,它可以称为是一切开发的“基石”。对于所有编程开发人员必须要知其然并知其所以然,所以网络部分将从协议、封包、解包等底层进行深入剖析。
3. 爬虫开发
在爬虫领域,Python几乎是霸主地位,将网络一切数据作为资源,通过自动化程序进行有针对性的数据采集以及处理。从事该领域应学习爬虫策略、高性能异步IO、分布式爬虫等,并针对Scrapy框架源码进行深入剖析,从而理解其原理并实现自定义爬虫框架。
4. 云计算开发
Python是从事云计算工作需要掌握的一门编程语言,目前很火的云计算框架OpenStack就是由Python开发的,如果想要深入学习并进行二次开发,就需要具备Python的技能。
5. 人工智能
MASA和Google早期大量使用Python,为Python积累了丰富的科学运算库,当AI时代来临后,Python从众多编程语言中脱颖而出,各种人工智能算法都基于Python编写,尤其PyTorch之后,Python作为AI时代头牌语言的位置基本确定。
6. 自动化运维
Python是一门综合性的语言,能满足绝大部分自动化运维需求,前端和后端都可以做,从事该领域,应从设计层面、框架选择、灵活性、扩展性、故障处理、以及如何优化等层面进行学习。
7. 金融分析
金融分析包含金融知识和Python相关模块的学习,学习内容囊括Numpy\Pandas\Scipy数据分析模块等,以及常见金融分析策略如“双均线”、“周规则交易”、“羊驼策略”、“Dual Thrust 交易策略”等。
8. 科学运算
Python是一门很适合做科学计算的编程语言,97年开始,NASA就大量使用Python进行各种复杂的科学运算,随着NumPy、SciPy、Matplotlib、Enthought librarys等众多程序库的开发,使得Python越来越适合做科学计算、绘制高质量的2D和3D图像。
9. 游戏开发
在网络游戏开发中,Python也有很多应用,相比于Lua or C++,Python比Lua有更高阶的抽象能力,可以用更少的代码描述游戏业务逻辑,Python非常适合编写1万行以上的项目,而且能够很好的把网游项目的规模控制在10万行代码以内。
10. 桌面软件
Python在图形界面开发上很强大,可以用tkinter/PyQT框架开发各种桌面软件!
Python 在编程语言中是什么地位?为什么很多大学不教 Python?
python的地位很高,目前是世界第5大编程语言。。但我觉得大学不教python,其实是正确的。
Python在诞生之初,只是用来在Linux上给Perl和shell做衔接用的“胶水”,而今天已经成为了主流的编程语言,能获得今天的地位,当然具备诸多优势。。。比如数学运算相关的各种库,爬虫,等等。。。但这都不是导致Python流行的最根本原因。
有没有比Python运算更强的语言?多得是
有没有比Python爬虫效率更高的语言?也不少
所以其实平日里随口道来的种种优势,并不是不可替代的。。这些优势,很多语言都具备。就比如perl,erlang,Julia等语言,其实用来做运算或爬虫比Python更强,但为什么这些语言却流行不起来?
说到底,Python成功的秘诀只有一条,其实就是在功能基本够用的前提下,比其他语言简单。而比Python简单的语言,功能又不够全面,比如Lua,Javascript,Ruby这些语言比Python更简单,但往往只适合一两个领域的工作,而无法面面俱到。
Python可以提供的这些功能,对于非专业程序员来讲,已经显得非常强大了。。但对于专业程序员来说,Python最大的作用,其实也只是用来“偷懒”而已。因为相比JAVA或C#这种工业级的编程语言来讲,Python除了入门简单之外,并无任何优势可言。而Python的动态语言特性、不利于维护等缺点,成为了限制它迈向深层开发的重大缺陷。
而如果熟练掌握JAVA或C#中的任何一门,想利用闲暇之余学习一下Python,看几个案例便可以入门,几乎不需要专门学习。
如果你并不以成为专业程序员做为目标,那么以Python为主,是可以的。但若想靠编程养家糊口,静态语言才是重中之重。
但如果是计算机专业的话,仅仅学Python,似乎就有点对不起“科班出身”的称号了。。。。学生们花着昂贵的学费,消耗四年光阴,却只学个Python,岂不是误人子弟?
就像你若报考摄影专业,老师应该教你使用单反,而不是教你使用手机摄像头。
Python 从入门到精通推荐看哪些书籍呢?
本人是一名大学生,在我的大学期间。我辅修了人工智能这门课。在人工智能这门课中有一门课程是 Python 从入门到精通,在这里我为大家推荐几本有助于python学习的书籍。下面是我 Python 从入门到精通 课程学习的结课证明。
学习Python推荐用书:《Python程序设计》《数据科学导论:Python语言实现》《Python数据挖掘:概念、方法与实践》《Python3智能数据分析快速入门》《Python爬虫开发与项目实战》。
(一)《Python程序设计》(原书第2版)
推荐语:本书介绍Python的基础知识,旨在帮助学生首先掌握概念,之后通过步骤完备的实例培养学生的问题求解能力。这一版采用Python3,并对全书结构进行了优化,既可作为门程序设计课的入门教材,也可供Python爱好者自学参考。
(二)、《数据科学导论:Python语言实现》(原书第2版)
推荐语:本书首先介绍如何设置基本的数据科学工具箱,然后带你进入数据改写和预处理阶段,这一部分主要是阐明所有与核心数据科学活动相关的数据分析过程,如数据加载、转换、修复以及数据探索和处理等。
通过主要的机器学习算法、图形分析技术,以及所有易于表现结果的可视化工具,实现对数据科学的概述。
(三)、《Python数据挖掘:概念、方法与实践》
推荐语:本书使用Python编程语言和基于项目的方法介绍多种常被忽视的数据挖掘概念,如关联规则、实体匹配、网络分析、文本挖掘和异常检测。
每个章节都全面阐述某种特定数据挖掘技术的基础知识,提供替代方案以评估其有效性,并用真实的数据实现该技术,帮助你“知其然,知其所以然”,从而迈向数据挖掘专家的道路。
(四)、《Python3智能数据分析快速入门》
推荐语:本书假设你有一定的数据分析基础,但是没有Python和AI基础,为了帮助你快速掌握智能数据分析需要的技术和方法,书中有针对性地讲解了Python和AI中必须要掌握的知识点,内容由浅入深,循序渐进。
从环境配置、基本语法、基础函数到第三方库的安装与使用,对各个操作步骤、函数、工具、代码示例等的讲解非常详尽,确保所有满足条件的读者都能快速入门。
(五)、《Python爬虫开发与项目实战》
推荐语:零基础学习爬虫技术,从Python和Web前端基础开始讲起,由浅入深,包含大量案例,实用性强。
Python 在编程语言中是什么地位?为什么很多大学不教 Python
Python是当下非常热门的一种编程语言。热门到什么程度?我们首先看看最近流行的编程语言排行榜:
这是 TIOBE编程语言社区发布的2018年1月排行榜,Python已经超过C#跃居热门编程语言的第四位。
那么,Python为什么会成长为如此热门的语言呢?
首先,跟最近大热的AI人工智能和深度学习技术是分不开的。现在流行的AI人工智能技术大部分都是用Python语言编写的,这大大促进了的Python语言的发展。AI深度学习技术本身的特点决定了其不适合静态编译型语言,而Python语言被选作AI技术框架的基础语言,更多的是源于Python的动态特性及其开发效率高等性能优势。
说起来Ruby、Perl等与Python同属动态语言,三者的运行效率相差并不大,而Python既可以写网络又可以处理数据,所以Python当仁不让的成为了AI技术的首选。
豆瓣的崛起是对Python语言性能的实例鉴证。豆瓣是最早使用Python作为语言的网站,其创始人用3个月时间使用基于Python的Quixote框架开发搭建了最初的豆瓣社区的框架。当时,PHP和JAVA是绝对的主流技术,但是想要用PHP或JAVA开发网站,需要自己动手处理大量的工作,单靠一个人在短时间内完成开发一个功能齐全的大型网站几乎是不可能的,所以Python的敏捷性与高效性使其当选为豆瓣的网站语言。
其次,Python涉及多领域的应用范围,促进了其成为热门语言。除了web开发,Python也应用于学术研究及科学领域。对于科研人员来说,Python简单易学,容易上手,即使非计算机专业的科研学者利用Python庞大的库和简单的语法,也可以编写工具帮助进行科学学术研究。
Python拥有Matplotlib(matplotlib.org/)及numPy()这样强大的绘图库和数值扩展,能帮助科研学术人员进行绘图和数值分析。这使得Python在该领域成为难以替代的选择。基于同样的原因,Python在国外政府部门也被大量运用。
Python还广泛应用于电子制造行业,比如布线仿真等CAD领域,比起传统的TCL编程,Python语言要友好的多。很多使用C/C++/JAVA编写的测试工具,由于静态编译语言维护成本相对较高,现在已经开始转为用Python编写了。在金融领域,比如量化交易,Python同样有许多强大的扩展库。
随着Python扩展库不断发展壮大,Python在科研、电子、政府、数据分析、web、金融、图像处理、AI技术各方面都有强大的类库、框架和解决方案,以致有了“已经没有任何语言能够动摇Python在今后生产生活的核心语言地位”的说法。因此也出现了在义务教育阶段就开始教授Python语言的情况出现。据说在美国,连婴幼儿都有 Python 编程书,Python 要从娃娃抓起。
第三,国家对于人工智能的重视,助推了Python的热门。2018年1月16日上午,教育部召开新闻发布会,介绍了《普通高中课程方案和语文等学科课程标准(2017年版)》的有关情况,并重新修订了语文等14门学科的课程标准。在此次“新课标”改革中,正式将人工智能、物联网、大数据处理划入新课标,这也就意味着今年秋季入学的高中生,将要开始学习Python了。
python的应用领域有哪些?
对于想要学习Python的同学来说,最该了解的就是其应用领域有哪些了,只有了解之后才能明确自己的目标,快来看看Python的应用领域都有哪些吧:
1、云计算
PYTHON语言算是云计算最火的语言, 典型应用OpenStack。
2、Web前端开发
Python相比php、ruby的模块化设计,非常利于功能扩展,多年来形成了大量优秀的web开发框架,且在不断迭代。
目前优秀的全栈框架有django、框架flask、都继承了python简单、明确的风格,开发效率高,易维护,与自动化运维结合性较好。
3、人工智能应用
基于大数据分析和深度学习而发展出来的人工智能本质上已经无法离开python的支持,目前世界优秀的人工智能学习框架如Google的TransorFlow 、FaceBook的PyTorch以及开源社区的神经网络库Karas等是用python实现的。
甚至微软的CNTK(认知工具包)也完全支持Python,而且微软的Vscode都已经把Python作为第一级语言进行支持。
4、系统运维工程项目
Python在与操作系统结合以及管理中非常密切,目前所有linux发行版中都带有python,且对于linux中相关的管理功能都有大量的模块可以使用,例如目前主流的自动化配置管理工具:SaltStackAnsible(目前是RedHat的)。
目前在几乎所有互联网公司,自动化运维的标配就是python+Django/flask,另外,在虚拟化管理方面已经是事实标准的openstack就是python实现的,所以Python是所有运维人员的必备技能。
5、金融理财分析
量化交易,金融分析,在金融工程领域,Python语言不但在用,且用的最多,而且重要性逐年提高。原因:作为动态语言的Python,语言结构清晰简单,库丰富,成熟稳定,科学计算和统计分析都很牛逼,生产效率远远高于c,c++,java,尤其擅长策略回测。