您的位置:

python博客项目总结(基于python的博客系统论文)

本文目录一览:

如何成为Python高手

如果你有一定的计算机编程知识基础,那么很容易学;再如果你对编程十分感兴趣,那么很容易学的。

1,找到合适的入门书籍,大致读一次,循环啊判断啊,常用类啊,搞懂(太难的跳过)

2,做些简单习题,字符串比较,读取日期之类 Python Cookbook不错(太难太无趣的,再次跳过,保持兴趣是最重要的,不会的以后可以再学)

3,加入Python讨论群,态度友好笑眯眯(很重要,这样高手才会耐心纠正你错误常识)。很多小问题,纠结许久,对方一句话点播思路,真的节约你很多时间。耐心指教我的好人,超级超级多谢。

4,解决自己电脑问题。比如下载美剧,零散下载了2,4,5,8集,而美剧共12集,怎样找出漏下的那几集?然后问题分解,1读取全部下载文件名,2提取集的数字,3数字排序和(1--12)对比,找出漏下的。

对于python初学者来说,能找到一个好老师学习格外重要,这能决定你是不是可以做出好的项目,在python开发的路上越走越轻松,如果现在的你缺乏学习经验,找不到老师指导你学习,可以加企 鹅扣-Q前面112再加上中间的983以及最后四位数4903,连在一起就可以了。

5,时刻记住目的,不是为了当程序员,是为了解决问题。比如,想偷懒抓网页内容,用urllib不行,用request也不行,才发现抓取内容涉及那么多方面(cookie,header,SSL,url,javascript等等),当然可以听人家劝,回去好好读书,从头读。 或者,不求效率,只求解决,用ie打开网页再另存为行不行?ie已经渲染过全部结果了。 问题变成:1--打开指定的10个网页(一行代码就行)。更复杂的想保存呢?利用已经存在的包,比如PAM30(我的是Python3),直接打开ie,用函数outHTML另存为文本,再用搜索函数(str搜索也行,re正则也行)找到数据。简单吧?而且代码超级短。

6,保持兴趣,用最简单的方式解决问题,什么底层驱动,各种交换,留给大牛去写吧。我们利用已经有的包完成。

7,耐心读文档,并且练习快速读文档。拿到新包,找到自己所需要的函数,是需要快速读一次的。这个不难,读函数名,大概能猜到是干嘛的,然后看看返回值,能判断是不是自己需要的。

8,写帮助文件和学习笔记,并发布共享。教别人的时候,其实你已经自己再次思考一次了。 我觉得学程序就像学英文,把高频率的词(循环,判断,常用包,常用函数)搞懂,就能拼装成自己想要的软件。 一定要保持兴趣,太复杂的跳过,就像小学数学,小学英语,都是由简入深。 网络很平面,无数国际大牛著作好书,关于Python,算法,电脑,网络,或者程序员思路,或者商业思维(浪潮之巅是本好书)等等,还有国际名校的网络公开课(中英文字幕翻译完毕,观看不是难事),讲计算机,网络,安全,或者安卓系统,什么都有,只要能持续保持兴趣,一点点学习下去,不是难事。 所有天才程序员,都曾是儿童,回到儿童思维来理解和学习。觉得什么有趣,先学,不懂的,先放着,遇到问题再来学,效果更好。 唯一建议是,不要太贪心,耐心学好一门优雅的语言,再学其它。虽然Javascript做特效很炫,或提某问题时,有大牛建议,用Ruby来写更好之类,不要改方向。就像老笑话:“要学习递归,必须首先理解递归。”然后死循环一直下去。坚持学好一门语言,再研究其他。 即使一门语言,跟网络,数据库等等相关的部分,若都能学好,再学其他语言,是很快的事情。 另外就是,用学英文的耐心来学计算机,英文遇到不懂的词,抄下,查询。 python里,看到Http,查查定义,看到outHtml,查查定义,跟初学英语时候一样,不要直接猜意思,因为精确描述性定义,跟含糊自然语有区别的。而新人瞎猜,很容易错误理解,wiki,google很有用。

Python精选5篇教学心得

Python是一种跨平台的计算机程序设计语言,是一种面向对象的动态类型语言,越来越多被用于独立的,大型项目的开发,已被逐渐广泛应用于系统管理任务的处理和Web编程。下面给大家带来一些关于Python 学习心得 ,希望对大家有所帮助。

python学习心得1

最近这段时间我们学习了很多内容,增长了很多关于Python的知识,万事万物是相通的,正如学习新的知识就像吃饭一样。

吃多了就会消化不良,反映到学习上也是一样,不知各位最近的感觉怎样,反正学记是需要一些时间好好消化,掌握到手中,为下一步的知识补齐缺口。

接下来,学记和大家一起回顾一下最近学习的内容,循序渐进,循序渐进。

分支结构

分支结构就像上图一样,是用来选择道路的。

所用的关键字是

If elif else

这三个词的意思分别是

如果 否则如果 其他的

分支语句的写法需要将与关键字与关键字对齐

循环结构

循环结构应用于一些重复的进程

通常我们只接触两种循环

for-in循环 和 while循环

for-in循环适用于

确切的知道到底循环几次

while循环适用于

不知道到底有几次循环

此时要搭配bool 来进行

即 True 和 Flase

关键字

关键字的熟练运用对于今后的开发工作

有非常重要的作用,但这么多关键字我们不能去死记硬背

只有在一个一个代码的验证当中去熟悉去掌握

那样是最可靠的

def 设置模组

len 计算字符串长度

capitalize 获得字符串首字母大写的拷贝

upper 获得字符串变大写后的拷贝

find 从字符串中查找子串所在位置

index 与find类似但找不到子串时会引发异常

startswith 检查字符串是否以指定的字符串开头

endswith 检查字符串是否以指定的字符串结尾

center 将字符串以指定的宽度居中并在两侧填充指定的字符

rjust 将字符串以指定的宽度靠右放置左侧 填充指定的字符

isdigit 检查字符串是否由数字构成

isalpha 检查字符串是否以字母构成

isalnum 检查字符串是否以数字和字母构成

append 添加元素

remove 删除元素

clear 清空元素

sorted 排序

大家可能会有些疑惑,学习这些东西真的有用吗?这些随处可见的基础方面的知识真的有用吗?

我可以非常肯定地告诉大家

有用的!

这些知识就像是建筑工地随处可见的砖石,不管这些砖石怎样的不起眼,但是没有一幢建筑可以离开砖石,学习的过程是枯燥的,不过这也正符合非常现实的一条规律。

学如逆水行舟,不进则退!

也正是因为它枯燥苦闷,学习有难度,才保证了,我们学习了这些知识以后,可以靠它们为生,在这个知识时代闯出自己的一片天!

不要放弃,绝对不要放弃!

黎明之前是最黑暗的!

为了自己的未来好好坚守吧!

青年学记 陪伴着各位青年

python学习心得2

python是一门非常有潜力的高级语言,历经多年的发展,其在编程上发挥着越来越大的作用。在这学期中,通过选修python课上的基础知识学习,我对python也有了一定的认识。而且,在字符串上的处理,python相对于c语言也是给程序员极大的便利。而python不仅如此,它的库也很多,正因为它强大的库,让编程变得不再艰难。但是,我认为python虽然在许多方 面相 对于c语言比较方便,但也有其相对于弱一点的方面,比如说for循环等方面。虽然一学期下来,我对python的学习也仅仅只是它的基础方面,但python的强大,也是足足地吸引着我,希望自己能够在不断地学习中,将python学习的更加好。

python是一门非常有潜力的高级语言,历经多年的发展,其在编程上发挥着越来越大的作用。在这学期中,通过选修python课上的基础知识学习,我对python也有了一定的认识。

在学习python的第一节课上,其对我的最初的印象就是,相较于我学习过的c语言编程,它更加的简洁。所有的变量都不需要像c语言编程那样需要提前去定义,这样给了编程者很大的自由空间与方便。如x=2,即可同时完成变量的定义与赋值。对于简化程序的代码,起到了许多的作用。而且,在字符串上的处理,python相对于c语言也是给程序员极大的便利。在c语言中,只能用字符类的数组对字符串进行相应的操作,步骤也是相对于比较繁琐的,而在python中,当我们需要创建一个字符串的时候,只需要在创建字符串的时候用“s=”就可以了。而python不仅如此,它的库也很多,正因为它强大的库,让编程变得不再艰难。我们只需要调用库中的函数,而对于函数的具体实现,也没有特殊的需求。

但是,我认为python虽然在许多方面相对于c语言比较方便,但也有其相对于弱一点的方面,比如说for循环等方面。不过也依然不会影响到python的强大,而随着近几年来的发展,python的受欢迎度也越来越高,而它的运用的领域也是越来越多,比如人工智能和大数据等领域,python都是在其中扮演者重要的角色。虽然一学期下来,我对python的学习也仅仅只是它的基础方面,但python的强大,也是足足地吸引着我,希望自己能够在不断地学习中,将python学习的更加好。

python学习心得3

由于我是自学Python,非科班出生,所以只能分享一些关于我的学习心得,如果有不对地方欢迎指正。

不过非科班出生虽然是一个痛点,但是在工作上,我其实不输给我其他同事,这点我倒是很有自信,而且我也统一一句话“目前互联网上的免费编程课程,足够让你成为一个合格的码农”。

编程入门

我刚开始学习编程,主要是因为自己想动手做个网站,但是由于技术原因,再加上朋友都比较忙,最后抱着“求人不如求己”的想法,干脆自学。

编程难不难?

这个问题我觉得所有认真学过的人,都一定会肯定告诉你编程不难,但是精通那是相当困难的。

如果你还没去学习,就觉得编程一定很难,那么其实你是没有资格说这句话的,任何事情一定是要去尝试后,才能这么说。

编程其实很像堆积木,然后根据需求,把东西造出来,可以是房子,也可以是桥梁。

学习编程无非运用这些积木,来创造你要的东西。

编程语言选择

这边说个题外话,关于当时编程语言的选择,很多时候我觉得不是你选择编程语言,而是编程语言选择你,也就是你的“本命编程语言”。

人的性格会影响你适合的编程语言,比如你做事有条理,喜欢定期清理房间,那么可能C语言很适合你;如果你不喜欢打扫房间,实在受不了,才打扫一次,可能你适合Java。

哈哈,开个玩笑,不过确实有这种很玄的存在。

我当时在编程语言的选择上,用了一个笨 方法 。

我跑到w3cschool上面,把所有编程语言的第一章都去试了一遍,看看自己喜欢哪个语言,然后就选哪个语言,如果你不知道选哪门语言,可以用我的方法试试看。

至于编程语言,没有高低之分,因为无论你学习哪门语言,你都非常有市场,而且你都能够拿到高薪,关键是哪门语言适合你,并且能够让你有兴趣学下去,能学好,这个很关键。

兴趣是学习编程最大的驱动力!

为什么是Python

说下为什么选择Python?

因为简单,Python是公认的最容易入门的编程语言,而且也是公认有发展前景的编程语言,适用于机器人、大数据、人工智商等未来高科技。

基于以上的原因,我选择Python来作为自己的入门语言,而且我觉得我适合Python这么语言。(因为我很懒)

之前有个梗,大概就是其他编程语言在讨论某个问题,怎么解决,而Python的程序员已经下班了,由此可见Python的效率。

总结 :Python的语言特点就是“一气呵成,痛快如拉稀”。

学习心得

由于我是自学的,所以参考的网站比较多,小伙伴可以按照我的学习路线,一般来说不会出现什么问题。

基础:教程+视频

进阶:视频+实践

进阶pro:视频+实践+书籍+交流

基础

刚开始学习的时候,我比较推荐w3cschool和菜鸟教程这两个网站。

w3cschool-学编程,从w3cschool开始!

菜鸟教程 - 学的不仅是技术,更是梦想!

这两个网站在我看来,是编程自学的福音。

w3cschool这个网站手册非常棒,另外这个网站的编程微课以及编程实战对新手来说非常友好!

我当时就是靠这两个,引发我学习的乐趣,不然对着枯燥的代码,说实话,很无聊的。

菜鸟教程,这个网站的实例是最棒的,很多时候,你不仅仅要自己看教程,还要去看看为什么,而菜鸟教程的实例就能够让你清晰的知道,为什么,并且会原来如此。

总的来说,这两个网站就像新手村刚出来的剑和盾!是新手入门绝对不能少的,尤其是w3cschool,强烈推荐。

还有一个就是视频,视频我是在慕课网上面看的,我很喜欢慕课网这个网站,网站风格很棒,而且视频也很清晰。

也可以在阿里云上面看Python的视频,也很不错,并且是免费的。

进阶

进阶结束后,代表你是个初级工程师。

这一步实践非常重要,你要自己动手,做一些小玩意,实践才是最重要的,在实践中发现问题,那是学习最快并且效率最高的时刻。

你可以先给自己定下一个目标,比如我要做一个简单的页面,或者我要做一个简单的小程序。

然后就开始动手去实践,这步很重要。

同时还是要多看书籍。

进阶pro

到这一步,我建议务必买书,你需要书籍帮你反向梳理你的知识,这决定了你以后的高度,而不是这个也懂,那个也懂,但是东西就是做不出来。

我记得当时我买完书,看完后的第一感受就是:原来这个世界是这样的!

书会非常系统性的帮你梳理你自己学过的知识!

这里只推荐两本书:《Python入门手册》和《Python核心编程》

小伙伴可以自己去亚马逊购买。

然后就是和身边的小伙伴交流!

多看看别人的代码,自己多敲敲代码,是必经之路,也是一定要做的。

以上,希望对想入门Python的小伙伴能够提供一点点帮助。

python学习心得4

017年11月,一群编程零基础的小伙伴们成立了Python学习小组,12名学员从此夜以继日地奔赴学习的征程。一个月过去了,从在屏幕上用最简单的语句打印出“Hello, Python; Hello, World”开始,我们逐步地学习Python语法,学习操作列表、字典,学习For,While,If语句,现在遇到了第一个难点:类。通过研读、练习、交流、讨论,作为程序界的小白,我们逐步地理解了类的概念,明白了面向对象与面向过程编程的差异,以下是我们的小小心得,与大家分享:

编程基本思想

现实世界中,每个复杂的事务都可以拆分为多个组成部分,其中的每一部分就可称之为对象。比如要实现一个很大很复杂的项目,我们可以把项目拆分成不同的组成部分,然后分别对不同部分通过编程实现,最终再把各个部分组装起来完成整个项目。这让我们能够从整体上来控制项目,从而让程序开发更有效。

比如汽车制造,汽车厂所做的仅仅是各个部件的组装和匹配,而各个部件的生产是由相对专业的厂商完成。如果需要研发新型号汽车,整车厂所考虑的是如何对各个新式的零部件进行新的组装和匹配,而不是从头到尾重新生产一辆汽车。

面向对象的编程

VS

面向过程的编程

面向过程编程是针对一个需求的具体实现过程,但是对于大型项目的复杂需求,一步一步的做,这种编程效率显然是低下的。

面向对象编程则是对项目进行拆分后(一般按照功能拆分),分别实现,再将各个对象组装起来。因此简单的小程序使用面向过程方法编程更适合。面向对象的编程特性是易维护(可读性高),效率高,质量高(重用性),扩展性好(高内聚,低耦合)。

对象

通俗的讲,对象就是事物,一个公司、一个部门、一个人,甚至一本书都可以是一个对象,程序员可以自由决定把什么作为对象。

比如eHR系统,需要对组织架构,员工进行管理,所以使用的对象可能是公司,部门,岗位,员工,等等。对象可大可小,可复杂也可简单,如果仅仅是做一个考勤系统,员工这个对象一定要比eHR系统中的员工对象简单。

现实世界中,类代表一组有共同特性的事物,把不同对象之间的共性抽象出来,就形成类的概念。比如说男人、女人可以抽象成人这个类;处长、秘书可以抽象成员工类。至于类如何去抽象,粒度的粗细,这是一个需要在学习和实践中摸索的过程。

实例

以下是一个实例,大家体会一下:

1. 定义父类:

class Employee:

def __init__(self, name, age): #抽象员工共性(名字,年龄)

self.name = name

self.age = age

def signON(self):

print(self.name+" sign on.") #抽象签到的动作

def work(self):

print(self.name + " on work.") #抽象工作的动作

2. 继承出子类:

class MEmployee(Employee): #继承父类的共性

def __init__(self, name, age):

super().__init__(name, age)

def work(self): #重写子类的方法(抽象出从事管理岗位工作的动作)

print(self.name + " on manager_work.")

3. 继承出第二个子类:

class TEmployee(Employee):

def __init__(self, name, age, devLanguage): #继承父类的共性,增加语言的属性

super().__init__(name, age)

self.devLanguage = devLanguage

def work(self): #重写子类的方法(抽象出从事技术岗位工作的动作)

print(self.name + " on technology_work.")

def showLanguage(self): #增加子类的方法(抽象出会某种编程语言的动作)

print("use "+self.devLanguage+" language.")

在上面的程序中,我们先定义了一个父类:包含员工的姓名、年龄等一般特性,可以执行签到、工作这两类动作。在第一个子类中,管理层在前面一般特性的基础上,执行管理工作;在第二个子类中,作为一般员工在前面一般特性的基础上,执行技术工作,从事编程。

python学习心得5

1、定义方法

关键字 def 是方法定义的标志。接下来紧跟方法名和被圆括号所包围的参数列表。方法的主

体语句将在下一行开始并且必须缩进。

方法主体的首句可选择性地是一句字符,用来说明方法的主要功能

例如:

"""print a finabo series up to n."""

2、默认参数值

默认值仅被设置一次,这与以前默认值为可变对象(如列表、字典和多数类实

例时)有很大的区别。

例如:

i=5

def f(arg=i):

print(arg)

i=6

f()

将会输出 5

3、关键字参数

可以通过形式关键字参数调用方法

在方法调用中,关键字参数必须遵循位置参数。 所有的关键参数必须符合方法接受的参数

其中之一。但是他们的次序不重要,这包含非选择的参数。没有参数可以多次接受一个值。

当最后一个形参是__ name 时,它可以接受包含除了形式参数之外的所有关键字的字典,

_ name 必须在__ name 之前出现

4、可变参数列表

正常来说,这些可变参数常常放在正式参数列表的后面,因为它们会包揽所有传递给该方法

的剩余输入参数。任何出现在_ args 参数后低的正式参数会被认为是关键字参数,意味着它

们只能当关键字使用而不是位置参数。

def concat(_ args,sep="/"):

...returnsep.join(args)

...

concat("earth","mars","venus")

’earth/mars/venus’

concat("earth","mars","venus", sep=".")

’earth.mars.venus’

5、拆分参数列表

当参数已经存在列表或者元组中,但是需要分拆以供要求分离位置参数调用的方法,如果单独

分开它们无法使用,就需要写一个方法用 _ 操作符来调用实现分拆列表或者元组中的参数。

同样的使用形式,字典可以用__ 操作符实现关键字参数。

6、形式

lamdba a,b:a+b 该函数表示两个数的和,像内嵌函数

7、代码风格

对于 python,PEP8 作为许多项目应该遵守的编码指导书而做的。 它提出了一种可读而悦

目的编码风格。 每位 python 开发者应该读它。这里抽出一个重要的事项与你分享 :

? 用四个空格代替 tab 键

? 每行不要超过 79 个字符。

? 用空行分离方法和类,大块代码中的方法。

? 必要的时候为每行添加注释。

? 用文档字符串

? 在操作符两边用空格

? 用统一的风格命名自定义的方法和类

? 如果你的代码打算用在国际环境中,请不要用想象的字符编码。Python 默认的是

utf-8,在任何情况下可以用 Ascii .

? 同样的,即使有很少机会让说不同语言的人们读代码或者维护代码,但在定义中不

要用非 ASCII 编码字符。

自学python的学习路线是什么?推荐一些python学习资源

第一个阶段

初级,掌握Python的语法和一些常用库的使用

这里首先推荐廖雪锋在网上的书籍,这是Python2.7版本的,这本书适合于重头开始一直读完,作为一个开发人员,除了基本的语法,这本书里面提到了一些其他的常用的库,看了廖老师写的很多东西,感觉他的思路,以及写博客写书的高度,概括性,原理性都十分好,这本书读完之后,相信就可以动手写很多东西了,可以尽情的玩转Python解释器了。

另外还有一本书《Python参考手册》,这本书也十分的有用,关于Python的方方面面基本都囊括在内,可以作为一本Python字典来查询使用方法,十分好用。

掌握一门语言最好的方法就是用它,所以我觉得边学语法边刷Leetcode是掌握Python最快的方式之一。

很多只需要将Python作为脚本或者就是写一些小程序处理处理文本的话,到这一个阶段就足够了,这个阶段已经可以帮我们完成很多很多的事情了。但是如果是一个专业学习Python的,恐怕还需要努力的升级:

第二个阶段

中级,掌握自己特定领域的库,掌握pythonic写法,非常熟悉Python的特性

推荐的第一本书是《编写高质量代码–改善python程序的91个建议》,这本书大概的提了下Python工程的文件布局,更多的总结了如何写出pythonic的代码,另外,也介绍了一些常用的库。

要想深入的了解Python,有的时候看看Python的源码也是很重要的,自己通过读懂源码,来彻底的了解Python的核心机制,这里推荐《Python源码剖析——深度探索动态语言核心技术》,这本书并没有看完,只是在需要深入了解Python某个功能或者数据结构的时候看看相关章节,也觉得受益匪浅。

自己领域的书籍和资料也肯定很多,比如web开发的构架都有很多,只有了解熟悉了所有构架,在选择的时候才能衡量利弊,然后深入掌握某些构架。

这个阶段过后,可以写出pythonic代码,可以通过PEP8的检查,可以为开源社区做贡献了,可以将一个Python文件写的十分好,但是如果要用Python开发一个大型项目,还是有很多东西需要掌握的,比如项目的文档,项目的发布,下载,项目性能和案例等等。

第三个阶段

高级,从整个工程项目着眼,考虑document,distribution,性能优化等

目前只看了一本书《the hacker guide to python》,看的是英文版的,这本书对项目的布局,文档,性能,发布等做了很多详细的介绍,我觉得写的还是很不错,只不过本人还需要再读几遍。

对于大多数人来说,很难有机会从头开始一个有意义的大型工程项目,所以自己可以用Python实现一些简单的功能,简单的项目,这个灵感可以去知乎或者quora搜索,很多前辈都分享了自己的经验。

从大局入手,规划好项目的布局,设定好相应的文档说明,提供工程下载安装的方法,带几个demo,每个类,每个函数,每行代码都反复推敲,写出pythonic的程序,相信这时候Python于我们便是信手拈来了!

学Python有哪些用处?

从入门级选手到专业级选手都在做的——爬虫

用 Python 写爬虫的教程网上一抓一大把,据我所知很多初学 Python 的人都是使用它编写爬虫程序。小到抓取一个小黄图网站,大到一个互联网公司的商业应用。通过 Python 入门爬虫比较简单易学,不需要在一开始掌握太多太基础太底层的知识就可以很快上手,而且很快可以做出成果,非常适合小白一开始想做出点看得见的东西的成就感。

除了入门,爬虫也被广泛应用到一些需要数据的公司、平台和组织,通过抓取互联网上的公开数据,来实现一些商业价值是非常常见的做法。当然这些选手的爬虫就要厉害的多了,需要处理包括路由、存储、分布式计算等很多问题,与小白的抓黄图小程序,复杂度差了很多倍。

Web 程序

除了爬虫,Python 也广泛应用到了 Web 端程序,比如你现在正在使用的知乎,主站后台就是基于 Python 的 tornado 框架,豆瓣的后台也是基于 Python。除了 tornado (Tornado Web Server),Python 常用的 Web 框架还有 Flask(Welcome | Flask (A Python Microframework)),Django (The Web framework for perfectionists with deadlines) 等等。通过上述框架,你可以很方便实现一个 Web 程序,比如我认识的一些朋友,就通过 Python 自己编写了自己的博客程序,包括之前的 zhihu.photo,我就是通过 Flask 实现的后台(出于版权等原因,我已经停掉了这个网站)。除了上述框架,你也可以尝试自己实现一个 Web 框架。

桌面程序

Python 也有很多 UI 库,你可以很方便地完成一个 GUI 程序(话说我最开始接触编程的时候,就觉得写 GUI 好炫酷,不过搞了好久才在 VC6 搞出一个小程序,后来又辗转 Delphi、Java等,最后接触到 Python 的时候,我对 GUI 已经不感兴趣了)。Python 实现 GUI 的实例也不少,包括大名鼎鼎的 Dropbox,就是 Python 实现的服务器端和客户端程序。

人工智能(AI)与机器学习

人工智能是现在非常火的一个方向,AI热潮让Python语言的未来充满了无限的潜力。现在释放出来的几个非常有影响力的AI框架,大多是Python的实现,为什么呢?因为Python足够动态、具有足够性能,这是AI技术所需要的技术特点。比如基于Python的深度学习库、深度学习方向、机器学习方向、自然语言处理方向的一些网站基本都是通过Python来实现的。

机器学习,尤其是现在火爆的深度学习,其工具框架大都提供了Python接口。Python在科学计算领域一直有着较好的声誉,其简洁清晰的语法以及丰富的计算工具,深受此领域开发者喜爱。

早在深度学习以及Tensorflow等框架流行之前,Python中即有scikit-learn,能够很方便地完成几乎所有机器学习模型,从经典数据集下载到构建模型只需要简单的几行代码。配合Pandas、matplotlib等工具,能很简单地进行调整。

而Tensorflow、PyTorch、MXNet、Keras等深度学习框架更是极大地拓展了机器学习的可能。使用Keras编写一个手写数字识别的深度学习网络仅仅需要寥寥数十行代码,即可借助底层实现,方便地调用包括GPU在内的大量资源完成工作。

值得一提的是,无论什么框架,Python只是作为前端描述用的语言,实际计算则是通过底层的C/C++实现。由于Python能很方便地引入和使用C/C++项目和库,从而实现功能和性能上的扩展,这样的大规模计算中,让开发者更关注逻辑于数据本身,而从内存分配等繁杂工作中解放出来,是Python被广泛应用到机器学习领域的重要原因。

科学计算

Python 的开发效率很高,性能要求较高的模块可以用 C 改写,Python 调用。同时,Python 可以更高层次的抽象问题,所以在科学计算领域也非常热门。包括 scipy、numpy 等用于科学计算的第三方库的出现,更是方便了又一定数学基础,但是计算机基础一般的朋友。