您的位置:

python中白叶繁的简单介绍

本文目录一览:

python可以做哪些有趣的事情

1. Python3 实现色情图片识别

2. Python3 图片隐写术

3. 200 行 Python 代码实现 2048

4. Python实现3D建模工具

5. 使用 Python 定制词云

6. Python3 智能裁切图片

7.微信变为聊天机器人

8. 使用 Python 解数学方程

9. 使用 Python 创建照片马赛克

10. Python 基于共现提取《釜山行》人物关系

11. Python 气象数据分析:《Python 数据分析实战》

12. NBA常规赛结果预测:利用Python进行比赛数据分析

13. Python 的循环语句和隐含波动率的计算

14. K-近邻算法实现手写数字识别系统

15. 数独游戏的 Python 实现与破解

16. 基于 Flask 与 MySQL 实现番剧推荐系

17. Python 实现英文新闻摘要自动提取

18. Python 解决哲学家就餐问题

19. Ebay 在线拍卖数据分析

20. 神经网络实现人脸识别任务

21. 使用 Python 解数学方程

22. Python3 实现火车票查询工具

23. Python 实现端口扫描器

24. Python3 实现可控制肉鸡的反向Shell

25. Python 实现 FTP 弱口令扫描器

26. 基于PyQt5 实现地图中定位相片拍摄位置

27. Python实现网站模拟登陆

28.Python实现简易局域网视频聊天工具

29. 基于 TCP 的 python 聊天程序

30. Python3基于Scapy实现DDos

31. 高德API + Python 解决租房问题

32. 基于 Flask 与 RethinkDB 实现TODO List

请教一个python代码问题!

假设两个数带进去替换x和n就好理解了,比如power(2,3)计算2的3次方

按照代码

s=1 n0(我们假设了n为3)

然后执行while n0 里的n=n-1 n变成2

再执行s(这个是新的s)=s(这个是旧的s)*x 新s变为2(我们上面假设x为2)

然后返回s(下次使用时就变成了旧s)

接着判断n,依旧大于0 ,执行n=n-1 n变成1 执行s=s*x 新s变为4,然后返回s

接着判断n,依旧大于0,执行n=n-1 n变成0(意味着这次结束就将跳出循环)执行s=s*x

新s变成8

循环结束,得到结果。2的3次方是8

不知道还有什么地方不明白

python 输出数字,如何不以科学计数法输出?

概述

利用numpy设置输出选项即可

代码解析

1、未使用numpy设置:

import time        # time 时间类

print(time*time*1000)      #输出一个非常大的数字

#out:

6.30e1352

由此可以看到,默认输出是以科学计数方式输出

2、使用numpy设置print的输出选项:

import numpy as np

import time

np.set_printoptions(suppress=True)        #设置print选项的参数

print(time*time*1000)

#out

6301829436782946134

拓展内容

numpy

NumPy是Python语言的一个扩充程序库。支持高阶大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。NumPy的前身Numeric最早是由Jim Hugunin与其它协作者共同开发,2005年,Travis Oliphant在Numeric中结合了另一个同性质的程序库Numarray的特色,并加入了其它扩展而开发了NumPy。NumPy为开放源代码并且由许多协作者共同维护开发。

NumPy引用CPython(一个使用字节码的解释器),而在这个Python实现解释器上所写的数学算法代码通常远比编译过的相同代码要来得慢。为了解决这个难题,NumPy引入了多维数组以及可以直接有效率地操作多维数组的函数与运算符。因此在NumPy上只要能被表示为针对数组或矩阵运算的算法,其运行效率几乎都可以与编译过的等效C语言代码一样快。

学习python,用什么软件?

Python开发软件可根据其用途不同分为两种,一种是Python代码编辑器,一种是Python集成开发工具,两者的配合使用可以极大的提高Python开发人员的编程效率,以下是常用的几款Python代码编辑器和Python集成开发工具。

一、Python代码编辑器

1. Sublime Text

Sublime Text是一款非常流行的代码编辑器,支持Python代码编辑,同时兼容所有平台,并且丰富的插件扩展了语法和编辑功能,迅捷小巧,具有良好的兼容性,很受编程人士的喜爱!

2. Vim

Vim和Vi是一种模型编辑器,它将文本查看从文本编辑中分离,VIM在原始VI之上做了诸多改进,包括可扩展模型和就地代码构建,VIMScripts可用于各种Python开发任务!

3. Atom

Atom被称为“21世纪可破解的文本编辑器”,可以兼容所有平台,拥有时尚的界面、文件系统浏览器和扩展插件市场,使用Electron构建,其运行时安装的扩展插件可支持Python语言!

4. GNU Emacs

GNU Emacs是一款终身免费且兼容任何平台的代码编辑器,使用强大的Lisp编程语言进行定制,并为Python开发提供各种定制脚本,是一款可扩展、可定制、自动记录、实时显示的编辑器,一直萦绕在UNIX周围。

5. Visual Studio Code

Visual Studio Code是一款兼容Linux、Mac OS X和Windows 平台的全功能代码编辑器,可扩展并且可以对几乎所有任务进行配置,对于Python的支持可以在Visual Studio Code中安装插件,只需快速点击按钮即可成功安装,且可自动识别Python安装和库。

二、Python集成开发环境

1. PyCharm

PyCharm是唯一一款专门面向Python的全功能集成开发环境,同样拥有付费版和免费开源版,PyCharm不论是在Windows、 Mac OS X系统中,还是在Linux系统中都支持快速安装和使用。

PyCharm直接支持Python开发环境,打开一个新的文件然后就可以开始编写代码,也可以在PyCharm中直接运行和调试Python程序,它还支持源码管理和项目,并且其拥有众多便利和支持社区,能够快速掌握学习使用!

2. Eclipse + PyDev

PyDev是Eclipse集成开发环境的一个插件,支持Python调试、代码补全和交互式Python控制台等,在Eclipse中安装PyDev非常便捷,只需从Eclipse中选择“Help”点击“Eclipse Marketplace”然后搜索PyDev,点击安装,必要的时候重启Eclipse即可,对于资深Eclipse开发者来说,PyDev可以很轻松上手!

3. Visual Studio

Visual Studio是一款全功能集成开发平台,提供了免费版和付费版,可以支持各种平台的开发,且附带了自己的扩展插件市场。在Visual Studio中可进行Python编程,并且支持Python智能感知、调试和其他工具,值得注意的是Visual Studio不支持Linux平台!

4. Spyder

Spyder是一款为了数据科学工作流做了优化的开源Python集成开发环境,它是附在Anaconda软件包管理器发行版中的,Spyder拥有大部分集成开发环境该具备的功能,如强大语法高亮功能的代码编辑器、Python代码补全以及集成文件浏览器,其还具有其他Python编辑环境中所不具备的变量浏览器功能,十分适合使用Python的数据科学家们。

5. Thonny

Thonny是针对新手的一款集成开发环境,适用于全部主流平台,默认情况下,Thonny会和自带捆绑的Python版本一起安装,十分方便新手使用!

最常用的几个python库

Python常用库大全,看看有没有你需要的。

环境管理

管理 Python 版本和环境的工具

p – 非常简单的交互式 python 版本管理工具。

pyenv – 简单的 Python 版本管理工具。

Vex – 可以在虚拟环境中执行命令。

virtualenv – 创建独立 Python 环境的工具。

virtualenvwrapper- virtualenv 的一组扩展。

包管理

管理包和依赖的工具。

pip – Python 包和依赖关系管理工具。

pip-tools – 保证 Python 包依赖关系更新的一组工具。

conda – 跨平台,Python 二进制包管理工具。

Curdling – 管理 Python 包的命令行工具。

wheel – Python 分发的新标准,意在取代 eggs。

包仓库

本地 PyPI 仓库服务和代理。

warehouse – 下一代 PyPI。

Warehousebandersnatch – PyPA 提供的 PyPI 镜像工具。

devpi – PyPI 服务和打包/测试/分发工具。

localshop – 本地 PyPI 服务(自定义包并且自动对 PyPI 镜像)。

分发

打包为可执行文件以便分发。

PyInstaller – 将 Python 程序转换成独立的执行文件(跨平台)。

dh-virtualenv – 构建并将 virtualenv 虚拟环境作为一个 Debian 包来发布。

Nuitka – 将脚本、模块、包编译成可执行文件或扩展模块。

py2app – 将 Python 脚本变为独立软件包(Mac OS X)。

py2exe – 将 Python 脚本变为独立软件包(Windows)。

pynsist – 一个用来创建 Windows 安装程序的工具,可以在安装程序中打包 Python本身。

构建工具

将源码编译成软件。

buildout – 一个构建系统,从多个组件来创建,组装和部署应用。

BitBake – 针对嵌入式 Linux 的类似 make 的构建工具。

fabricate – 对任何语言自动找到依赖关系的构建工具。

PlatformIO – 多平台命令行构建工具。

PyBuilder – 纯 Python 实现的持续化构建工具。

SCons – 软件构建工具。

交互式解析器

交互式 Python 解析器。

IPython – 功能丰富的工具,非常有效的使用交互式 Python。

bpython- 界面丰富的 Python 解析器。

ptpython – 高级交互式Python解析器, 构建于python-prompt-toolkit 之上。

文件

文件管理和 MIME(多用途的网际邮件扩充协议)类型检测。

imghdr – (Python 标准库)检测图片类型。

mimetypes – (Python 标准库)将文件名映射为 MIME 类型。

path.py – 对 os.path 进行封装的模块。

pathlib – (Python3.4+ 标准库)跨平台的、面向对象的路径操作库。

python-magic- 文件类型检测的第三方库 libmagic 的 Python 接口。

Unipath- 用面向对象的方式操作文件和目录

watchdog – 管理文件系统事件的 API 和 shell 工具

日期和时间

操作日期和时间的类库。

arrow- 更好的 Python 日期时间操作类库。

Chronyk – Python 3 的类库,用于解析手写格式的时间和日期。

dateutil – Python datetime 模块的扩展。

delorean- 解决 Python 中有关日期处理的棘手问题的库。

moment – 一个用来处理时间和日期的Python库。灵感来自于Moment.js。

PyTime – 一个简单易用的Python模块,用于通过字符串来操作日期/时间。

pytz – 现代以及历史版本的世界时区定义。将时区数据库引入Python。

when.py – 提供用户友好的函数来帮助用户进行常用的日期和时间操作。

文本处理

用于解析和操作文本的库。

通用

chardet – 字符编码检测器,兼容 Python2 和 Python3。

difflib – (Python 标准库)帮助我们进行差异化比较。

ftfy – 让Unicode文本更完整更连贯。

fuzzywuzzy – 模糊字符串匹配。

Levenshtein – 快速计算编辑距离以及字符串的相似度。

pangu.py – 在中日韩语字符和数字字母之间添加空格。

pyfiglet -figlet 的 Python实现。

shortuuid – 一个生成器库,用以生成简洁的,明白的,URL 安全的 UUID。

unidecode – Unicode 文本的 ASCII 转换形式 。

uniout – 打印可读的字符,而不是转义的字符串。

xpinyin – 一个用于把汉字转换为拼音的库。

如何系统地自学 Python

是否非常想学好 Python,一方面被琐事纠缠,一直没能动手,另一方面,担心学习成本太高,心里默默敲着退堂鼓?

幸运的是,Python 是一门初学者友好的编程语言,想要完全掌握它,你不必花上太多的时间和精力。

Python 的设计哲学之一就是简单易学,体现在两个方面:

语法简洁明了:相对 Ruby 和 Perl,它的语法特性不多不少,大多数都很简单直接,不玩儿玄学。

切入点很多:Python 可以让你可以做很多事情,科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,总有一个是你感兴趣并且愿意投入时间的。

废话不多说,学会一门语言的捷径只有一个: Getting Started

¶ 起步阶段

任何一种编程语言都包含两个部分:硬知识和软知识,起步阶段的主要任务是掌握硬知识。

°1 硬知识

“硬

知识”指的是编程语言的语法、算法和数据结构、编程范式等,例如:变量和类型、循环语句、分支、函数、类。这部分知识也是具有普适性的,看上去是掌握了一

种语法,实际是建立了一种思维。例如:让一个 Java 程序员去学习 Python,他可以很快的将 Java 中的学到的面向对象的知识 map 到

Python 中来,因此能够快速掌握 Python 中面向对象的特性。

如果你是刚开始学习编程的新手,一本可靠的语法书是非常重要的。它看上去可能非常枯燥乏味,但对于建立稳固的编程思维是必不可少。

下面列出了一些适合初学者入门的教学材料:

❖「笨方法学 Python」:

这本书在讲解 Python 的语法成分时,还附带大量可实践的例子,非常适合快速起步。

❖「廖雪峰的 Python 2.7 教程」:Home - 廖雪峰的官方网站

Python 中文教程的翘楚,专为刚刚步入程序世界的小白打造。

❖「The Hitchhiker’s Guide to Python!」:The Hitchhiker’s Guide to Python!

这本指南着重于 Python 的最佳实践,不管你是 Python 专家还是新手,都能获得极大的帮助。

❖「Python 官方文档」:Our Documentation

实践中大部分问题,都可以在官方文档中找到答案。

❖ 辅助工具:Python Tutor

一个 Python 对象可视化的项目,用图形辅助你理解 Python 中的各种概念。

Python 的哲学:

用一种方法,最好是只有一种方法来做一件事。

学习也是一样,虽然推荐了多种学习资料,但实际学习的时候,最好只选择其中的一个,坚持看完。

必要的时候,可能需要阅读讲解数据结构和算法的书,这些知识对于理解和使用 Python 中的对象模型有着很大的帮助。

°2 软知识

“软知识”则是特定语言环境下的语法技巧、类库的使用、IDE的选择等等。这一部分,即使完全不了解不会使用,也不会妨碍你去编程,只不过写出的程序,看上去显得“傻”了些。

这些知识的学习,取决于你尝试解决的问题的领域和深度。对初学者而言,起步阶段极易走火,或者在选择 Python 版本时徘徊不决,一会儿看 2.7

一会儿又转到 3.0,或者徜徉在类库的大海中无法自拔,Scrapy,Numpy,Django

什么都要试试,或者参与编辑器圣战、大括号缩进探究、操作系统辩论赛等无意义活动,或者整天跪舔语法糖,老想着怎么一行代码把所有的事情做完,或者去构想

圣洁的性能安全通用性健壮性全部满分的解决方案。

很多“大牛”都会告诫初学者,用这个用那个,少走弯路,这样反而把初学者推向了真正的弯路。

还不如告诉初学者,学习本来就是个需要你去走弯路出 Bug,只能脚踏实地,没有奇迹只有狗屎的过程。

选择一个方向先走下去,哪怕脏丑差,走不动了再看看有没有更好的解决途径。

自己走了弯路,你才知道这么做的好处,才能理解为什么人们可以手写状态机去匹配却偏要发明正则表达式,为什么面向过程可以解决却偏要面向对象,为什么我可以操纵每一根指针却偏要自动管理内存,为什么我可以嵌套回调却偏要用 Promise...

更重要的时,你会明白,高层次的解决方法都是对低层次的封装,并不是任何情况下都是最有效最合适的。

技术涌进就像波浪一样,那些陈旧的封存已久的技术,消退了迟早还会涌回的。就像现在移动端应用、手游和 HTML5 的火热,某些方面不正在重演过去 PC 的那些历史么?

因此,不要担心自己走错路误了终身,坚持并保持进步才是正道。

起步阶段的核心任务是掌握硬知识,软知识做适当了解,有了稳固的根,粗壮的枝干,才能长出浓密的叶子,结出甜美的果实。

¶ 发展阶段

完成了基础知识的学习,必定会感到一阵空虚,怀疑这些语法知识是不是真的有用。

没错,你的怀疑是非常正确的。要让 Python 发挥出它的价值,当然不能停留在语法层面。

发展阶段的核心任务,就是“跳出 Python,拥抱世界”。

在你面前会有多个分支:科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,这些都不是仅仅知道 Python 语法就能解决的问题。

爬虫举例,如果你对计算机网络,HTTP协议,HTML,文本编码,JSON一无所知,你能做好这部分的工作么?而你在起步阶段的基础知识也同样重要,如

果你连循环递归怎么写都还要查文档,连 BFS 都不知道怎么实现,这就像工匠做石凳每次起锤都要思考锤子怎么使用一样,非常低效。

在这个阶段,不可避免要接触大量类库,阅读大量书籍的。

°1 类库方面

「Awesome Python 项目」:vinta/awesome-python · GitHub

这里列出了你在尝试解决各种实际问题时,Python 社区已有的工具型类库,如下图所示:

你可以按照实际需求,寻找你需要的类库。

至于相关类库如何使用,必须掌握的技能便是阅读文档。由于开源社区大多数文档都是英文写成的,所以,英语不好的同学,需要恶补下。

°2 书籍方面:

这里我只列出一些我觉得比较有一些帮助的书籍,详细的请看豆瓣的书评:

科学和数据分析:

❖「集体智慧编程」:集体智慧编程 (豆瓣)

❖「数学之美」:数学之美 (豆瓣)

❖「统计学习方法」:统计学习方法 (豆瓣)

❖「Pattern Recognition And Machine Learning」:Pattern Recognition And Machine Learning (豆瓣)

❖「数据科学实战」:数据科学实战 (豆瓣)

❖「数据检索导论」:信息检索导论 (豆瓣)

爬虫:

❖「HTTP 权威指南」:HTTP权威指南 (豆瓣)

Web 网站:

❖「HTML CSS 设计与构建网站」:HTML CSS设计与构建网站 (豆瓣)

...

列到这里已经不需要继续了。

聪明的你一定会发现上面的大部分书籍,并不是讲 Python 的书,而更多的是专业知识。

事实上,这里所谓“跳出 Python,拥抱世界”,其实是发现 Python 和专业知识相结合,能够解决很多实际问题。这个阶段能走到什么程度,更多的取决于自己的专业知识。

¶ 深入阶段

这个阶段的你,对 Python 几乎了如指掌,那么你一定知道 Python 是用 C 语言实现的。

可是 Python 对象的“动态特征”是怎么用相对底层,连自动内存管理都没有的C语言实现的呢?这时候就不能停留在表面了,勇敢的拆开 Python 的黑盒子,深入到语言的内部,去看它的历史,读它的源码,才能真正理解它的设计思路。

这里推荐一本书:

「Python 源码剖析」:Python源码剖析 (豆瓣)

这本书把 Python 源码中最核心的部分,给出了详细的阐释,不过阅读此书需要对 C 语言内存模型和指针有着很好的理解。

外,Python 本身是一门杂糅多种范式的动态语言,也就是说,相对于 C 的过程式、 Haskell 等的函数式、Java

基于类的面向对象而言,它都不够纯粹。换而言之,编程语言的“道学”,在 Python

中只能有限的体悟。学习某种编程范式时,从那些面向这种范式更加纯粹的语言出发,才能有更深刻的理解,也能了解到 Python 语言的根源。

这里推荐一门公开课

「编程范式」:斯坦福大学公开课:编程范式

讲师高屋建瓴,从各种编程范式的代表语言出发,给出了每种编程范式最核心的思想。

值得一提的是,这门课程对C语言有非常深入的讲解,例如C语言的范型和内存管理。这些知识,对阅读 Python 源码也有大有帮助。

Python 的许多最佳实践都隐藏在那些众所周知的框架和类库中,例如 Django、Tornado 等等。在它们的源代码中淘金,也是个不错的选择。

¶ 最后的话

每个人学编程的道路都是不一样的,其实大都殊途同归,没有迷路的人只有不能坚持的人。虽然听上去有点鸡汤,但是这是事实。

希望想学 Python 想学编程的同学,不要犹豫了,看完这篇文章,Just getting started~