您的位置:

python支持库大全,常用的Python库

本文目录一览:

2017年10大流行Python库有哪些

1、NumPy

NumPy是构建科学计算 stack 的最基础的包。它为 Python 中的 n 维数组和矩阵的操作提供了大量有用的功能。该库还提供了 NumPy 数组类型的数学运算向量化,可以提升性能,从而加快执行速度。

2、SciPy

SciPy 是一个工程和科学软件库, 包含线性代数、优化、集成和统计的模块。SciPy 库的主

要功能建立在 NumPy 的基础之上,它通过其特定的子模块提供高效的数值例程操作。SciPy 的所有子模块中的函数都有详细的文档,这也是一个优势。

3、Pandas

Pandas是一个 Python 包,旨在通过「标记(labeled)」和「关系(relational)」数据进行工作,简单直观。Pandas 是 data wrangling 的完美工具。它设计用于快速简单的数据操作、聚合和可视化。

4、Seaborn

Seaborn 主要关注统计模型的可视化;这种可视化包括热度图(heat map),可以总结数据但也描绘总体分布。Seaborn 基于 Matplotlib,并高度依赖于它。

5、Bokeh

Bokeh是一个很好的可视化库,其目的是交互式可视化,不过这个库独立于 Matplotlib,它通过现代浏览器以数据驱动文档(D3.js)的风格呈现。

6、Scikits

Scikits 是 SciPy Stack 的附加软件包,专为特定功能(如图像处理和辅助机器学习)而设计。其中最突出的一个是 scikit-learn。该软件包构建于 SciPy 之上,并大量使用其数学操作,是使用 Python 进行机器学习的实际上的行业标准。

7、Theano

Theano 是一个 Python 包,它定义了与 NumPy 类似的多维数组,以及数学运算和表达式。该库是经过编译的,使其在所有架构上能够高效运行。这个库最初由蒙特利尔大学机器学习组开发,主要是为了满足机器学习的需求。

8、Keras

Keras是一个使用高层接口构建神经网络的开源库,它是用 Python 编写的。它简单易懂,具有高级可扩展性。Keras 极其容易上手,而且可以进行快速的原型设计,足以用于严肃的建模。

9、Gensim

Gensim是一个用于 Python 的开源库,实现了用于向量空间建模和主题建模的工具。Gensim 实现了诸如分层 Dirichlet 进程(HDP)、潜在语义分析(LSA)和潜在 Dirichlet 分配(LDA)等算法,还有 tf-idf、随机投影、word2vec 和 document2vec,以便于检查一组文档(通常称为语料库)中文本的重复模式。

10、Scrapy

Scrapy 是用于从网络检索结构化数据的爬虫程序的库。它现在已经发展成了一个完整的框架,可以从 API 收集数据,也可以用作通用的爬虫。该库在接口设计上遵循著名的 Don』t Repeat Yourself 原则——提醒用户编写通用的可复用的代码,因此可以用来开发和扩展大型爬虫。

Python中数据可视化经典库有哪些?

Python有很多经典的数据可视化库,比较经典的数据可视化库有下面几个。

matplotlib

是Python编程语言及其数值数学扩展包 NumPy 的可视化操作界面。它利用通用的图形用户界面工具包,如 Tkinter, wxPython, Qt 或 GTK+,向应用程序嵌入式绘图提供了应用程序接口。

pyplot 是 matplotlib 的一个模块,它提供了一个类似 MATLAB 的接口。 matplotlib 被设计得用起来像 MATLAB,具有使用 Python 的能力。

优点:绘图质量高,可绘制出版物质量级别的图形。代码够简单,易于理解和扩展,使绘图变得轻松,通过Matplotlib可以很轻松地画一些或简单或复杂的图形,几行代码即可生成直方图、条形图、散点图、密度图等等,最重要的是免费和开源。

pandas

Pandas 是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。需要说明的是它不是“熊猫”,名字衍生自术语 "panel data"(面板数据)和 "Python data analysis"(Python 数据分析)。

优点:是Python的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观的处理关系型、标记型数据。对于数据分析专业人士,它是数据分析及可视化的利器。

seaborn

Seaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。

它是基于matplotlib更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,应该把Seaborn视为matplotlib的补充,而不是替代物,它能高度兼容numpy与pandas数据结构以及scipy与statsmodels等统计模式。

优点:matplotlib高度封装,代码量少,图表漂亮。比起matplotlib具有更美观、更现代的调色板设计等优点。scikit-plot

这是一个跟机器学习有效结合的绘图库。想要深入学习的小伙伴参见其github仓库,这里不再赘述了。

优点:Scikit-Plot是由ReiichiroNakano创建的用在机器学习的可视化工具,能最快速简洁的画出用Matplotlib要写很多行语句才能画出的图。关键是对于机器学习相关可视化处理,该库有较好的支持。

Networkx

networkx是Python的一个包,用于构建和操作复杂的图结构,提供分析图的算法。图是由顶点、边和可选的属性构成的数据结构,顶点表示数据,边是由两个顶点唯一确定的,表示两个顶点之间的关系。顶点和边也可以拥有更多的属性,以存储更多的信息。

优点:用于创建、操纵和研究复杂网络的结构、以及学习复杂网络的结构、功能及其动力学。

上面是我的回答,希望对您有所帮助!

最受欢迎的 15 大 Python 库有哪些

1、Pandas:是一个Python包,旨在通过“标记”和“关系”数据进行工作,简单直观。它设计用于快速简单的数据操作、聚合和可视化,是数据整理的完美工具。

2、Numpy:是专门为Python中科学计算而设计的软件集合,它为Python中的n维数组和矩阵的操作提供了大量有用的功能。该库提供了NumPy数组类型的数学运算向量化,可以改善性能,从而加快执行速度。

3、SciPy:是一个工程和科学软件库,包含线性代数,优化,集成和统计的模块。SciPy库的主要功能是建立在NumPy上,通过其特定子模块提供有效的数值例程,并作为数字积分、优化和其他例程。

4、Matplotlib:为轻松生成简单而强大的可视化而量身定制,它使Python成为像MatLab或Mathematica这样的科学工具的竞争对手。

5、Seaborn:主要关注统计模型的可视化(包括热图),Seaborn高度依赖于Matplotlib。

6、Bokeh:独立于Matplotlib,主要焦点是交互性,它通过现代浏览器以数据驱动文档的风格呈现。

7、Plotly:是一个基于Web用于构建可视化的工具箱,提供API给一些编程语言(Python在内)。

8、Scikits:是Scikits

Stack额外的软件包,专为像图像处理和机器学习辅助等特定功能而设计。它建立在SciPy之上,中集成了有质量的代码和良好的文档、简单易用并且十分高效,是使用Python进行机器学习的实际行业标准。

9、Theano:是一个Python软件包,它定义了与NumPy类似的多维数组,以及数学运算和表达式。此库是被编译的,可实现在所有架构上的高效运行。

10、TensorFlow:是数据流图计算的开源库,旨在满足谷歌对训练神经网络的高需求,并且是基于神经网络的机器学习系统DistBelief的继任者,可以在大型数据集上快速训练神经网络。

11、Keras:是一个用Python编写的开源的库,用于在高层的接口上构建神经网络。它简单易懂,具有高级可扩展性。

12、NLTK:主要用于符号学和统计学自然语言处理(NLP) 的常见任务,旨在促进NLP及相关领域(语言学,认知科学人工智能等)的教学和研究。

13、Gensim:是一个用于Python的开源库,为有向量空间模型和主题模型的工作提供了使用工具。这个库是为了高效处理大量文本而设计,不仅可以进行内存处理,还可以通过广泛使用NumPy数据结构和SciPy操作来获得更高的效率。

…………

Python中的库都有哪些?

标准库

sys

系统相关的参数和函数。 sys 库一般用来访问和修改系统相关信息,比如查看 python 版本、系统环境变量、模块信息和 python 解释器相关信息等等。

os

操作系统接口模块。这个库提供了访问操作系统相关依赖的方式,比如输入输出操作、读写操作、操作系统异常错误信息、进程线程管理、文件管理、调度程序等等。

re

正则表达式操作。这个库是我喜欢并且经常会用到的库,在对大量字符串进行处理的时候用正则表达式是最快速有效的方式,但是正则表达式的学习曲线较高,有兴趣的朋友可以访问这个网站学习。

math

数学函数库。 math 库提供了对 C 语言标准定义的数学函数访问,比如数论(Number-theoretic)的各种表示方法、幂和对数函数(Power and logarithmic functions)、三角函数(Trigonometric functions)、常量圆周率(π)和自然常数(e)等等。

random

生成伪随机数。

伪随机数与随机数(真随机数)不同的是执行环境,随机数是真实世界中通过物理过程实践得出结论,而伪随机数是通过计算机的特定算法生成的数,所以这个过程是可预测的、有规律的,只是循环周期较长,并不能与现实场景相切合。

random库提供生成随机数,可以模拟现实世界中随机取数、随机抽奖等等。望采纳

最常用的几个python库

Python常用库大全,看看有没有你需要的。

环境管理

管理 Python 版本和环境的工具

p – 非常简单的交互式 python 版本管理工具。

pyenv – 简单的 Python 版本管理工具。

Vex – 可以在虚拟环境中执行命令。

virtualenv – 创建独立 Python 环境的工具。

virtualenvwrapper- virtualenv 的一组扩展。

包管理

管理包和依赖的工具。

pip – Python 包和依赖关系管理工具。

pip-tools – 保证 Python 包依赖关系更新的一组工具。

conda – 跨平台,Python 二进制包管理工具。

Curdling – 管理 Python 包的命令行工具。

wheel – Python 分发的新标准,意在取代 eggs。

包仓库

本地 PyPI 仓库服务和代理。

warehouse – 下一代 PyPI。

Warehousebandersnatch – PyPA 提供的 PyPI 镜像工具。

devpi – PyPI 服务和打包/测试/分发工具。

localshop – 本地 PyPI 服务(自定义包并且自动对 PyPI 镜像)。

分发

打包为可执行文件以便分发。

PyInstaller – 将 Python 程序转换成独立的执行文件(跨平台)。

dh-virtualenv – 构建并将 virtualenv 虚拟环境作为一个 Debian 包来发布。

Nuitka – 将脚本、模块、包编译成可执行文件或扩展模块。

py2app – 将 Python 脚本变为独立软件包(Mac OS X)。

py2exe – 将 Python 脚本变为独立软件包(Windows)。

pynsist – 一个用来创建 Windows 安装程序的工具,可以在安装程序中打包 Python本身。

构建工具

将源码编译成软件。

buildout – 一个构建系统,从多个组件来创建,组装和部署应用。

BitBake – 针对嵌入式 Linux 的类似 make 的构建工具。

fabricate – 对任何语言自动找到依赖关系的构建工具。

PlatformIO – 多平台命令行构建工具。

PyBuilder – 纯 Python 实现的持续化构建工具。

SCons – 软件构建工具。

交互式解析器

交互式 Python 解析器。

IPython – 功能丰富的工具,非常有效的使用交互式 Python。

bpython- 界面丰富的 Python 解析器。

ptpython – 高级交互式Python解析器, 构建于python-prompt-toolkit 之上。

文件

文件管理和 MIME(多用途的网际邮件扩充协议)类型检测。

imghdr – (Python 标准库)检测图片类型。

mimetypes – (Python 标准库)将文件名映射为 MIME 类型。

path.py – 对 os.path 进行封装的模块。

pathlib – (Python3.4+ 标准库)跨平台的、面向对象的路径操作库。

python-magic- 文件类型检测的第三方库 libmagic 的 Python 接口。

Unipath- 用面向对象的方式操作文件和目录

watchdog – 管理文件系统事件的 API 和 shell 工具

日期和时间

操作日期和时间的类库。

arrow- 更好的 Python 日期时间操作类库。

Chronyk – Python 3 的类库,用于解析手写格式的时间和日期。

dateutil – Python datetime 模块的扩展。

delorean- 解决 Python 中有关日期处理的棘手问题的库。

moment – 一个用来处理时间和日期的Python库。灵感来自于Moment.js。

PyTime – 一个简单易用的Python模块,用于通过字符串来操作日期/时间。

pytz – 现代以及历史版本的世界时区定义。将时区数据库引入Python。

when.py – 提供用户友好的函数来帮助用户进行常用的日期和时间操作。

文本处理

用于解析和操作文本的库。

通用

chardet – 字符编码检测器,兼容 Python2 和 Python3。

difflib – (Python 标准库)帮助我们进行差异化比较。

ftfy – 让Unicode文本更完整更连贯。

fuzzywuzzy – 模糊字符串匹配。

Levenshtein – 快速计算编辑距离以及字符串的相似度。

pangu.py – 在中日韩语字符和数字字母之间添加空格。

pyfiglet -figlet 的 Python实现。

shortuuid – 一个生成器库,用以生成简洁的,明白的,URL 安全的 UUID。

unidecode – Unicode 文本的 ASCII 转换形式 。

uniout – 打印可读的字符,而不是转义的字符串。

xpinyin – 一个用于把汉字转换为拼音的库。

Python 常用的标准库以及第三方库有哪些

参考:知乎

Python 常用的标准库以及第三方库

standard libs:

itertools

functools 学好python有必要掌握上面这两个库吧,

re 正则

subprocess 调用shell命令的神器

pdb 调试

traceback 调试

pprint 漂亮的输出

logging 日志

threading和multiprocessing 多线程

urllib/urllib2/httplib http库,httplib底层一点,推荐第三方的库requests

os/sys 系统,环境相关

Queue 队列

pickle/cPickle 序列化工具

hashlib md5, sha等hash算法

cvs

json/simplejson python的json库,据so上的讨论和benchmark,simplejson的性能要高于json

timeit 计算代码运行的时间等等

cProfile python性能测量模块

glob 类似与listfile,可以用来查找文件

atexit 有一个注册函数,可用于正好在脚本退出运行前执行一些代码

dis python 反汇编,当对某条语句不理解原理时,可以用dis.dis 函数来查看代码对应的python 解释器指令等等。

3th libs:

paramiko ssh python 库

selenium 浏览器自动化测试工具selenium的python 接口

lxml python 解析html,xml 的神器

mechanize Stateful programmatic web browsing

pycurl cURL library module for Python

Fabric Fabric is a Python (2.5 or higher) library and command-line tool for streamlining the use of SSH for application deployment or systems administration tasks.

xmltodict xml 转 dict,真心好用

urllib3 和 requests: 当然其实requests就够了 Requests: HTTP for Humans

flask web 微框架

ipdb 调试神器,同时推荐ipython!结合ipython使用

redis redis python接口

pymongo mongodbpython接口

PIL python图像处理

mako python模版引擎

numpy , scipy 科学计算

matplotlib 画图

scrapy 爬虫

django/tornado/web.py/web2py/uliweb/flask/twisted/bottle/cherrypy.等等 python web框架/服务器

sh 1.08 — sh v1.08 documentation 用来运行shell 模块的 极佳选择