本文目录一览:
java 单例模式详解
单例模式也是一种比较常见的设计模式,它到底能带给我们什么好处呢?其实无非是三个方面的作用:
第一、控制资源的使用,通过线程同步来控制资源的并发访问;
第二、控制实例产生的数量,达到节约资源的目的。
第三、作为通信媒介使用,也就是数据共享,它可以在不建立直接关联的条件下,让多个不相关的两个线程或者进程之间实现通信。
比如,数据库连接池的设计一般采用单例模式,数据库连接是一种数据库资源
JAVA单例模式的几种实现方法
JAVA
单例模式的几种实现方法
1.饿汉式单例类
package
pattern.singleton;
//
饿汉式单例类
.
在类初始化时,已经自行实例化
public
class
Singleton1
{
//
私有的默认构造子
private
Singleton1()
{}
//
已经自行实例化
private
static
final
Singleton1
single
=
new
Singleton1();
//
静态工厂方法
public
static
Singleton1
getInstance()
{
return
single;
}
}
2.
懒汉式单例类
package
pattern.singleton;
//
懒汉式单例类
.
在第一次调用的时候实例化
public
class
Singleton2
{
//
私有的默认构造子
private
Singleton2()
{}
//
注意,这里没有
final
private
static
Singleton2
single;
//
只实例化一次
static
{
single
=
new
Singleton2();
}
//
静态工厂方法
public
synchronized
static
Singleton2
getInstance()
{
if
(single
==
null
)
{
single
=
new
Singleton2();
}
return
single;
}
}
在上面给出懒汉式单例类实现里对静态工厂方法使用了同步化,以处理多线程环境。有些设计师在这里建议使用所谓的
"
双重检查成例
".
必须指出的是,
"
双重检查成例
"
不可以在
Java
语言中使用。不十分熟悉的读者,可以看看后面给出的小节。
同
样,由于构造子是私有的,因此,此类不能被继承。饿汉式单例类在自己被加载时就将自己实例化。即便加载器是静态的,在饿汉
式单例类被加载时仍会将自己实例化。单从资源利用效率角度来讲,这个比懒汉式单例类稍差些。从速度和反应时间角度来讲,
则
比懒汉式单例类稍好些。然而,懒汉式单例类在实例化时,必须处
理好在多个线程同时首次引用此类时的访问限制问题,特别是当单例类作为资源控制器,在实例化时必然涉及资源初始化,而资源
初始化很有可能耗费时间。这意味着出现多线程同时首次引用此类的机率变得较大。
饿汉式单例类可以在
Java
语言内实现,
但不易在
C++
内实现,因为静态初始化在
C++
里没有固定的顺序,因而静态的
m_instance
变量的初始化与类的加载顺序没有保证,可能会出问题。这就是为什么
GoF
在提出单例类的概念时,举的例子是懒
汉式的。他们的书影响之大,以致
Java
语言中单例类的例子也大多是懒汉式的。实际上,本书认为饿汉式单例类更符合
Java
语
言本身的特点。
3.
登记式单例类
.
package
pattern.singleton;
import
java.util.HashMap;
import
java.util.Map;
//
登记式单例类
.
//
类似
Spring
里面的方法,将类名注册,下次从里面直接获取。
public
class
Singleton3
{
private
static
MapString,Singleton3
map
=
new
HashMapString,Singleton3();
static
{
Singleton3
single
=
new
Singleton3();
map.put(single.getClass().getName(),
single);
}
//
保护的默认构造子
protected
Singleton3(){}
//
静态工厂方法
,
返还此类惟一的实例
public
static
Singleton3
getInstance(String
name)
{
if
(name
==
null
)
{
name
=
Singleton3.
class
.getName();
System.out.println("name
==
null"+"---name="+name);
}
if
(map.get(name)
==
null
)
{
try
{
map.put(name,
(Singleton3)
Class.forName(name).newInstance());
}
catch
(InstantiationException
e)
{
e.printStackTrace();
}
catch
(IllegalAccessException
e)
{
e.printStackTrace();
}
catch
(ClassNotFoundException
e)
{
e.printStackTrace();
}
}
return
map.get(name);
}
//
一个示意性的商业方法
public
String
about()
{
return
"Hello,
I
am
RegSingleton.";
}
public
static
void
main(String[]
args)
{
Singleton3
single3
=
Singleton3.getInstance(
null
);
System.out.println(single3.about());
}
}
简述java的单例模式,顺便来个例子
单例就是构造方法私有化.
构造方法私有化(加private),外部无法产生对象,因为new 类名(),会无法调用该类的的构造方法
class Sing{
public static Sing instance = new Sing();//内部实例化
private Sing(){super();}//加private,外部无法实例化,即无法访问
public static Sing getInstance(){return instance;}
}
在主类中这样调用
Sing s = Sing.getInstance();//实现实例化对象
如何在Java中实现单例模式?
单例模式1:
public
class
singleton{
private
static
singleton
st
=
null;
private
singleton(){
}
public
static
singleton
getinstance(){
if(st
==
null){
st
=
new
singleton();
}
return
st;
}
}
单例模式2:
public
class
singleton{
private
static
singleton
st
=
new
singleton();
private
singleton(){
}
public
static
singleton
getinstance(){
return
st;
}
}
多线程1:
导入thread所在的包
public
class
mythread1
extends
thread{
public
void
run(){
xxxxx写自己的代码
}
}
多线程2
导入runnable所在的包
public
class
mythread2
implements
runnable{
public
void
run(){
xxxxx写自己的代码
}
}
另写一个测试类,在main方法中这样写:
thread
t
=
new
mythread1();
或者
runnable
r
=
new
mythread2();
thread
t
=
new
thread(r);
设计模式之单例模式
本文开始整个设计模式的系列学习,希望通过不断的学习,可以对设计模式有整体的掌握,并在项目中根据实际的情况加以利用。
单例模式是指一个类仅允许创建其自身的一个实例,并提供对该实例的访问权限。它包含静态变量,可以容纳其自身的唯一和私有实例。它被应用于这种场景——用户希望类的实例被约束为一个对象。在需要单个对象来协调整个系统时,它会很有帮助。
1、单例类只能有一个实例
2、单例类必须自己创建自己的唯一实例
3、单例类必须给其他所有对象提供这一实例
1.尽量使用懒加载
2.双重检索实现线程安全
3.构造方法为private
4.定义静态的Singleton instance对象和getInstance()方法
单例模式至少有六种写法。
作为一种重要的设计模式,单例模式的好处有:
1、控制资源的使用,通过线程同步来控制资源的并发访问
2、控制实例的产生,以达到节约资源的目的
3、控制数据的共享,在不建立直接关联的条件下,让多个不相关的进程或线程之间实现通信
Singleton通过将构造方法限定为private避免了类在外部被实例化,在同一个虚拟机范围内,Singleton的唯一实例只能通过getInstance()方法访问。但其实通过Java反射机制是能够实例化构造方法为private的类的,那基本上会使所有的Java单例实现失效。
虽然也是只有一个线程能够执行,假如线程B先执行,线程B获得锁,线程B执行完之后,线程 A获得锁,但是此时没有检查singleton是否为空就直接执行了,所以还会出现两个singleton实例的情况。
既然懒汉式是非线程安全的,那就要改进它。最直接的想法是,给getInstance方法加锁不就好了,但是我们不需要给方法全部加锁啊,只需要给方法的一部分加锁就好了。基于这个考虑,引入了双检锁(Double Check Lock,简称DCL)的写法:
使用volatile 的原因:
对于JVM而言,它执行的是一个个Java指令。在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间, 然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就使出错成为了可能,我们仍然以A、B两个线程为例:
加载一个类时,其内部类不会同时被加载。一个类被加载,当且仅当其某个静态成员(静态域、构造器、静态方法等)被调用时发生。
枚举类实现单例模式是 effective java 作者极力推荐的单例实现模式,因为枚举类型是线程安全的,并且只会装载一次,设计者充分的利用了枚举的这个特性来实现单例模式,枚举的写法非常简单,而且枚举类型是所用单例实现中唯一一种不会被破坏的单例实现模式。因为枚举类没有构造方法,可以防止反序列化操作。
1、除枚举方式外, 其他方法都会通过反射的方式破坏单例,反射是通过调用构造方法生成新的对象,所以如果我们想要阻止单例破坏,可以在构造方法中进行判断,若已有实例, 则阻止生成新的实例,解决办法如下:
2、如果单例类实现了序列化接口Serializable, 就可以通过反序列化破坏单例,所以我们可以不实现序列化接口,如果非得实现序列化接口,可以重写反序列化方法readResolve(), 反序列化时直接返回相关单例对象。
Runtime是一个典型的例子,看下JDK API对于这个类的解释"每个Java应用程序都有一个Runtime类实例,使应用程序能够与其运行的环境相连接,可以通过getRuntime方法获取当前运行时。应用程序不能创建自己的Runtime类实例。",这段话,有两点很重要:
1、每个应用程序都有一个Runtime类实例
2、应用程序不能创建自己的Runtime类实例
只有一个、不能自己创建,是不是典型的单例模式?看一下,Runtime类的写法:
为了节约系统资源,有时需要确保系统中某个类只有唯一一个实例,当这个唯一实例创建成功之后,我们无法再创建一个同类型的其他对象,所有的操作都只能基于这个唯一实例。为了确保对象的唯一性,我们可以通过单例模式来实现。
单例模式应用的场景一般发现在以下条件下:
(1)资源共享的情况下,避免由于资源操作时导致的性能或损耗等。如上述中的日志文件,应用配置。
(2)控制资源的情况下,方便资源之间的互相通信。如线程池等。
关于单例模式的漫画分析:
单例模式的优缺点、注意事项、使用场景