本文目录一览:
- 1、python 常用的系统函数有哪些
- 2、python 21:match对象的两个方法group()和groups()
- 3、python 正则表达式 groups和group有什么区别?
- 4、python数据分析需要学习哪些内容?
- 5、python模拟数据库group by count怎么写
python 常用的系统函数有哪些
1.常用内置函数:(不用import就可以直接使用)
help(obj) 在线帮助, obj可是任何类型
callable(obj) 查看一个obj是不是可以像函数一样调用
repr(obj) 得到obj的表示字符串,可以利用这个字符串eval重建该对象的一个拷贝
eval_r(str) 表示合法的python表达式,返回这个表达式
dir(obj) 查看obj的name space中可见的name
hasattr(obj,name) 查看一个obj的name space中是否有name
getattr(obj,name) 得到一个obj的name space中的一个name
setattr(obj,name,value) 为一个obj的name space中的一个name指向vale这个object
delattr(obj,name) 从obj的name space中删除一个name
vars(obj) 返回一个object的name space。用dictionary表示
locals() 返回一个局部name space,用dictionary表示
globals() 返回一个全局name space,用dictionary表示
type(obj) 查看一个obj的类型
isinstance(obj,cls) 查看obj是不是cls的instance
issubclass(subcls,supcls) 查看subcls是不是supcls的子类
类型转换函数
chr(i) 把一个ASCII数值,变成字符
ord(i) 把一个字符或者unicode字符,变成ASCII数值
oct(x) 把整数x变成八进制表示的字符串
hex(x) 把整数x变成十六进制表示的字符串
str(obj) 得到obj的字符串描述
list(seq) 把一个sequence转换成一个list
tuple(seq) 把一个sequence转换成一个tuple
dict(),dict(list) 转换成一个dictionary
int(x) 转换成一个integer
long(x) 转换成一个long interger
float(x) 转换成一个浮点数
complex(x) 转换成复数
max(...) 求最大值
min(...) 求最小值
用于执行程序的内置函数
complie 如果一段代码经常要使用,那么先编译,再运行会更快。
2.和操作系统相关的调用
系统相关的信息模块 import sys
sys.argv是一个list,包含所有的命令行参数.
sys.stdout sys.stdin sys.stderr 分别表示标准输入输出,错误输出的文件对象.
sys.stdin.readline() 从标准输入读一行 sys.stdout.write("a") 屏幕输出a
sys.exit(exit_code) 退出程序
sys.modules 是一个dictionary,表示系统中所有可用的module
sys.platform 得到运行的操作系统环境
sys.path 是一个list,指明所有查找module,package的路径.
操作系统相关的调用和操作 import os
os.environ 一个dictionary 包含环境变量的映射关系 os.environ["HOME"] 可以得到环境变量HOME的值
os.chdir(dir) 改变当前目录 os.chdir('d:\\outlook') 注意windows下用到转义
os.getcwd() 得到当前目录
os.getegid() 得到有效组id os.getgid() 得到组id
os.getuid() 得到用户id os.geteuid() 得到有效用户id
os.setegid os.setegid() os.seteuid() os.setuid()
os.getgruops() 得到用户组名称列表
os.getlogin() 得到用户登录名称
os.getenv 得到环境变量
os.putenv 设置环境变量
os.umask 设置umask
os.system(cmd) 利用系统调用,运行cmd命令
操作举例:
os.mkdir('/tmp/xx') os.system("echo 'hello' /tmp/xx/a.txt") os.listdir('/tmp/xx')
os.rename('/tmp/xx/a.txt','/tmp/xx/b.txt') os.remove('/tmp/xx/b.txt') os.rmdir('/tmp/xx')
用python编写一个简单的shell
#!/usr/bin/python
import os, sys
cmd = sys.stdin.readline()
while cmd:
os.system(cmd)
cmd = sys.stdin.readline()
用os.path编写平台无关的程序
os.path.abspath("1.txt") == os.path.join(os.getcwd(), "1.txt")
os.path.split(os.getcwd()) 用于分开一个目录名称中的目录部分和文件名称部分。
os.path.join(os.getcwd(), os.pardir, 'a', 'a.doc') 全成路径名称.
os.pardir 表示当前平台下上一级目录的字符 ..
os.path.getctime("/root/1.txt") 返回1.txt的ctime(创建时间)时间戳
os.path.exists(os.getcwd()) 判断文件是否存在
os.path.expanduser('~/dir') 把~扩展成用户根目录
os.path.expandvars('$PATH') 扩展环境变量PATH
os.path.isfile(os.getcwd()) 判断是否是文件名,1是0否
os.path.isdir('c:\Python26\temp') 判断是否是目录,1是0否
os.path.islink('/home/huaying/111.sql') 是否是符号连接 windows下不可用
os.path.ismout(os.getcwd()) 是否是文件系统安装点 windows下不可用
os.path.samefile(os.getcwd(), '/home/huaying') 看看两个文件名是不是指的是同一个文件
os.path.walk('/home/huaying', test_fun, "a.c")
遍历/home/huaying下所有子目录包括本目录,对于每个目录都会调用函数test_fun.
例:在某个目录中,和他所有的子目录中查找名称是a.c的文件或目录。
def test_fun(filename, dirname, names): //filename即是walk中的a.c dirname是访问的目录名称
if filename in names: //names是一个list,包含dirname目录下的所有内容
print os.path.join(dirname, filename)
os.path.walk('/home/huaying', test_fun, "a.c")
文件操作
打开文件
f = open("filename", "r") r只读 w写 rw读写 rb读二进制 wb写二进制 w+写追加
读写文件
f.write("a") f.write(str) 写一字符串 f.writeline() f.readlines() 与下read类同
f.read() 全读出来 f.read(size) 表示从文件中读取size个字符
f.readline() 读一行,到文件结尾,返回空串. f.readlines() 读取全部,返回一个list. list每个元素表示一行,包含"\n"\
f.tell() 返回当前文件读取位置
f.seek(off, where) 定位文件读写位置. off表示偏移量,正数向文件尾移动,负数表示向开头移动。
where为0表示从开始算起,1表示从当前位置算,2表示从结尾算.
f.flush() 刷新缓存
关闭文件
f.close()
regular expression 正则表达式 import re
简单的regexp
p = re.compile("abc") if p.match("abc") : print "match"
上例中首先生成一个pattern(模式),如果和某个字符串匹配,就返回一个match object
除某些特殊字符metacharacter元字符,大多数字符都和自身匹配。
这些特殊字符是 。^ $ * + ? { [ ] \ | ( )
字符集合(用[]表示)
列出字符,如[abc]表示匹配a或b或c,大多数metacharacter在[]中只表示和本身匹配。例:
a = ".^$*+?{\\|()" 大多数metachar在[]中都和本身匹配,但"^[]\"不同
p = re.compile("["+a+"]")
for i in a:
if p.match(i):
print "[%s] is match" %i
else:
print "[%s] is not match" %i
在[]中包含[]本身,表示"["或者"]"匹配.用
和
表示.
^出现在[]的开头,表示取反.[^abc]表示除了a,b,c之外的所有字符。^没有出现在开头,即于身身匹配。
-可表示范围.[a-zA-Z]匹配任何一个英文字母。[0-9]匹配任何数字。
\在[]中的妙用。
\d [0-9]
\D [^0-9]
\s [ \t\n\r\f\v]
\S [^ \t\n\r\f\v]
\w [a-zA-Z0-9_]
\W [^a-zA-Z0-9_]
\t 表示和tab匹配, 其他的都和字符串的表示法一致
\x20 表示和十六进制ascii 0x20匹配
有了\,可以在[]中表示任何字符。注:单独的一个"."如果没有出现[]中,表示出了换行\n以外的匹配任何字符,类似[^\n].
regexp的重复
{m,n}表示出现m个以上(含m个),n个以下(含n个). 如ab{1,3}c和abc,abbc,abbbc匹配,不会与ac,abbbc匹配。
m是下界,n是上界。m省略表下界是0,n省略,表上界无限大。
*表示{,} +表示{1,} ?表示{0,1}
最大匹配和最小匹配 python都是最大匹配,如果要最小匹配,在*,+,?,{m,n}后面加一个?.
match object的end可以得到匹配的最后一个字符的位置。
re.compile("a*").match('aaaa').end() 4 最大匹配
re.compile("a*?").match('aaaa').end() 0 最小匹配
使用原始字符串
字符串表示方法中用\\表示字符\.大量使用影响可读性。
解决方法:在字符串前面加一个r表示raw格式。
a = r"\a" print a 结果是\a
a = r"\"a" print a 结果是\"a
使用re模块
先用re.compile得到一个RegexObject 表示一个regexp
后用pattern的match,search的方法,得到MatchObject
再用match object得到匹配的位置,匹配的字符串等信息
RegxObject常用函数:
re.compile("a").match("abab") 如果abab的开头和re.compile("a")匹配,得到MatchObject
_sre.SRE_Match object at 0x81d43c8
print re.compile("a").match("bbab")
None 注:从str的开头开始匹配
re.compile("a").search("abab") 在abab中搜索第一个和re_obj匹配的部分
_sre.SRE_Match object at 0x81d43c8
print re.compile("a").search("bbab")
_sre.SRE_Match object at 0x8184e18 和match()不同,不必从开头匹配
re_obj.findall(str) 返回str中搜索所有和re_obj匹配的部分.
返回一个tuple,其中元素是匹配的字符串.
MatchObject的常用函数
m.start() 返回起始位置,m.end()返回结束位置(不包含该位置的字符).
m.span() 返回一个tuple表示(m.start(), m.end())
m.pos(), m.endpos(), m.re(), m.string()
m.re().search(m.string(), m.pos(), m.endpos()) 会得到m本身
m.finditer()可以返回一个iterator,用来遍历所有找到的MatchObject.
for m in re.compile("[ab]").finditer("tatbxaxb"):
print m.span()
高级regexp
| 表示联合多个regexp. A B两个regexp,A|B表示和A匹配或者跟B匹配.
^ 表示只匹配一行的开始行首,^只有在开头才有此特殊意义。
$ 表示只匹配一行的结尾
\A 表示只匹配第一行字符串的开头 ^匹配每一行的行首
\Z 表示只匹配行一行字符串的结尾 $匹配第一行的行尾
\b 只匹配词的边界 例:\binfo\b 只会匹配"info" 不会匹配information
\B 表示匹配非单词边界
示例如下:
print re.compile(r"\binfo\b").match("info ") #使用raw格式 \b表示单词边界
_sre.SRE_Match object at 0x817aa98
print re.compile("\binfo\b").match("info ") #没有使用raw \b表示退格符号
None
print re.compile("\binfo\b").match("\binfo\b ")
_sre.SRE_Match object at 0x8174948
分组(Group) 示例:re.compile("(a(b)c)d").match("abcd").groups() ('abc', 'b')
#!/usr/local/bin/python
import re
x = """
name: Charles
Address: BUPT
name: Ann
Address: BUPT
"""
#p = re.compile(r"^name:(.*)\n^Address:(.*)\n", re.M)
p = re.compile(r"^name:(?P.*)\n^Address:(?P.*)\n", re.M)
for m in p.finditer(x):
print m.span()
print "here is your friends list"
print "%s, %s"%m.groups()
Compile Flag
用re.compile得到RegxObject时,可以有一些flag用来调整RegxObject的详细特征.
DOTALL, S 让.匹配任意字符,包括换行符\n
IGNORECASE, I 忽略大小写
LOCALES, L 让\w \W \b \B和当前的locale一致
MULTILINE, M 多行模式,只影响^和$(参见上例)
VERBOSE, X verbose模式
python 21:match对象的两个方法group()和groups()
返回查到到的匹配文本。
import re
phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')
mo = phoneNumRegex.search('My number is 415-555-4242.')
print('Phone number found:' + mo.group())
Phone number found:415-555-4242
假定想要将区号从电话号码中分离,添加括号将在正则表达式中创建“分组”:(\d\d\d) -(\d\d\d-\d\d\d\d)。然后可以使用group()匹配对象方法,从一个分组中获取匹配的文本。
正则表达式字符串中的第一对括号是第1组。第二对括号是第2组。
向group()匹配对象方法传入整数1或2,就可以取得匹配文本的不同部分。向group()方法传入0或不传入参数,将返回整个匹配的文本。
group()方法在分组的情况下,可以通过指定参数来返回指定分组的匹配文本。
phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d-\d\d\d\d)')
mo = phoneNumRegex.search('My number is 415-555-4242.')
mo.group(1)
'415'
mo.group(2)
'555-4242'
mo.group(0)
'415-555-4242'
mo.group()
'415-555-4242'
使用groups()方法,返回一个元组。有多少分组就有多少元素。
mo.groups()
('415' ,'555-4242')
areaCode, mainNumber =mo.groups()
print(areaCode)
415
print(mainNumber)
555-4242
python 正则表达式 groups和group有什么区别?
group和groups是两个不同的函数。
一般,m.group(N) 返回第N组括号匹配的字符。
而m.group() == m.group(0) == 所有匹配的字符,与括号无关,这个是API规定的。
m.groups() 返回所有括号匹配的字符,以tuple格式。
m.groups() == (m.group(0), m.group(1), ...)
正则表达式中,group()用来提取分组截获的字符串,()用来分组。
组是通过 "(" 和 ")" 元字符来标识的。 "(" 和 ")" 有很多在数学表达式中相同的意思;它们一起把在它们里面的表达式组成一组。举个例子,你可以用重复限制符,象 *, +, ?, 和 {m,n},来重复组里的内容,比如说(ab)* 将匹配零或更多个重复的 "ab"。
如果不引入括号,整个个表达式作为一个组,是group(0)
对于题目中的例子:
m = re.match("([abc])+", "abc")
+号在括号外面。括号最多匹配到一个字符,要么是a, 要么是c,这个python引擎匹配的是末尾的c。
而m.group() == m.group(0) 这个返回的是整个匹配的字符串"abc".
python数据分析需要学习哪些内容?
1.统计基础
理工科的学生在本科阶段学习过概率论与数理统计,单从做数据分析的角度已经够用。其他方面,可以根据需要查看相关书籍,随时进行查漏补缺即可。个人推荐《深入浅出统计学》,可以让统计理论的学习有趣又自然。
2.数据库知识
关系型数据库很重要。在学习数据分析的初期甚至很长一段时间,你接触到的数据都存储在关系型数据库中,需要学习SQL语言进行数据查询。关于SQL语言,强力推荐《SQL必知必会》,整本书通俗易懂,是学习SQL语言的不二之选。
学习数据库的本质就是在学习一种与数据打交道的逻辑思维与能力。编程中的很多思想都和关系型数据库、SQL相通,比如:SQL中对data进行group by的操作,这个在Excel里类似于透视表,在Python/R中也有相应的group function去处理数据。甚至在以后的进阶过程,你会接触到分布式数据库和所对应的no-SQL语句。
3.编程能力
Excel。 透视表(Pivot Table)是做数据分析的必备技能。透视表可以帮你迅速汇总数据,看到各类型数据的直观特征就像是让你站在更高的视角看待数据。作为进阶,Excel自带的函数、各种插件,以及VBA也是很好的工具。
python模拟数据库group by count怎么写
1、group by和count()操作同时使用,查出来的东西不一样,每个都有其应用的情况,如本例:最开始方法查出来的就是分组以后每个分组的记录条数,如果程序中要计算每个分组的记录条数,恰恰用这种方法。
2 、要更多靠数据库去解决问题。
3 、意识到子查询的威力,当遇到解决不了的问题的时候,可以试试用子查询去解决。(实践证明的)。