您的位置:

python中异常好用的工具,python 做的小工具

本文目录一览:

想自己学习Python开发。使用什么开发工具好一些呢?

如果想写python的程序,至少需要安装一个python 的解释器。用来解释python的程序文件。

编辑器的话,没有谁好谁好,主要还是看个人的喜好,比较主流的几下几个。

1. pycharm:这是一个集成化开发工具,集编辑运行一体,比较方便。但是软件收费,可以下载社区版初期学习使用

2. sublime text:比较好用的轻量级文本编辑工具。需要配合解释器开发

3. vim编辑器:linux 或mac 系统下的命令行界面的文本编辑工具,也可以编写程序。需要对系统有所了解才能上手。

4. 其它文本编辑工具

如果想学习Python,可以看看黑马程序员的学习视频啊,有600集的那个很好自学哦~欢迎你采纳我的回答

python初学者工具用什么工具好呢

Python开发软件可根据其用途不同分为两种,一种是Python代码编辑器,一种是Python集成开发工具,两者的配合使用可以极大的提高Python开发人员的编程效率,以下是常用的几款Python代码编辑器和Python集成开发工具。

一、Python代码编辑器

1. Sublime Text

Sublime Text是一款非常流行的代码编辑器,支持Python代码编辑,同时兼容所有平台,并且丰富的插件扩展了语法和编辑功能,迅捷小巧,具有良好的兼容性,很受编程人士的喜爱!

2. Vim

Vim和Vi是一种模型编辑器,它将文本查看从文本编辑中分离,VIM在原始VI之上做了诸多改进,包括可扩展模型和就地代码构建,VIMScripts可用于各种Python开发任务!

3. Atom

Atom被称为“21世纪可破解的文本编辑器”,可以兼容所有平台,拥有时尚的界面、文件系统浏览器和扩展插件市场,使用Electron构建,其运行时安装的扩展插件可支持Python语言!

4. GNU Emacs

GNU Emacs是一款终身免费且兼容任何平台的代码编辑器,使用强大的Lisp编程语言进行定制,并为Python开发提供各种定制脚本,是一款可扩展、可定制、自动记录、实时显示的编辑器,一直萦绕在UNIX周围。

5. Visual Studio Code

Visual Studio Code是一款兼容Linux、Mac OS X和Windows 平台的全功能代码编辑器,可扩展并且可以对几乎所有任务进行配置,对于Python的支持可以在Visual Studio Code中安装插件,只需快速点击按钮即可成功安装,且可自动识别Python安装和库。

二、Python集成开发环境

1. PyCharm

PyCharm是唯一一款专门面向Python的全功能集成开发环境,同样拥有付费版和免费开源版,PyCharm不论是在Windows、 Mac OS X系统中,还是在Linux系统中都支持快速安装和使用。

PyCharm直接支持Python开发环境,打开一个新的文件然后就可以开始编写代码,也可以在PyCharm中直接运行和调试Python程序,它还支持源码管理和项目,并且其拥有众多便利和支持社区,能够快速掌握学习使用!

2. Eclipse + PyDev

PyDev是Eclipse集成开发环境的一个插件,支持Python调试、代码补全和交互式Python控制台等,在Eclipse中安装PyDev非常便捷,只需从Eclipse中选择“Help”点击“Eclipse Marketplace”然后搜索PyDev,点击安装,必要的时候重启Eclipse即可,对于资深Eclipse开发者来说,PyDev可以很轻松上手!

3. Visual Studio

Visual Studio是一款全功能集成开发平台,提供了免费版和付费版,可以支持各种平台的开发,且附带了自己的扩展插件市场。在Visual Studio中可进行Python编程,并且支持Python智能感知、调试和其他工具,值得注意的是Visual Studio不支持Linux平台!

4. Spyder

Spyder是一款为了数据科学工作流做了优化的开源Python集成开发环境,它是附在Anaconda软件包管理器发行版中的,Spyder拥有大部分集成开发环境该具备的功能,如强大语法高亮功能的代码编辑器、Python代码补全以及集成文件浏览器,其还具有其他Python编辑环境中所不具备的变量浏览器功能,十分适合使用Python的数据科学家们。

5. Thonny

Thonny是针对新手的一款集成开发环境,适用于全部主流平台,默认情况下,Thonny会和自带捆绑的Python版本一起安装,十分方便新手使用!

开发Python用哪些工具好

刚学python时,面对简陋的官方版idle和一大堆开发平台和发行版,不知道究竟如何下手。在进行多方尝试后,我最后的选择是Anaconda + Pycharm,用anaconda集成的ipython做工作台,做一些分析和小段程序调试的工作,用Pycharm写相应脚本和程序包的开发。这两个工具都是跨平台的,也都有免费版本。

具体来说Anaconda集成了几乎所有我需要的包库,包含了我整个工作流程,做数据分析的pandas\scipy\numpy、绘图的matplotlib、读写Excel文档的xlrd/xlwt,链接SQL数据库的SQLalchemy、机器学习框架sklearn等。对于Anaconda集成的两个工作平台,Spyder——一个类似于Matlab和Rstudio的IDE,是专注于面向数据的分析的,因为其特点也主要是数据区的存在,可以即时知道变量值的变化;Ipython——一个基于cell的shell界面,可以理解为python自带shell的增强版,它将程序分成一块一块的cell,每个cell可以包含多条语句,可以单独调试运行,并将结果保存在内存中,cell之间可以相互调用,并保持一定的相互独立。