本文目录一览:
Python的深度学习框架有哪些?
中公教育联合中科院专家打造的深度学习分八个阶段进行学习:
第一阶段AI概述及前沿应用成果介绍
深度学习的最新应用成果
单层/深度学习与机器学习
人工智能的关系及发展简
第二阶段神经网络原理及TensorFlow实战
梯度下降优化方法
前馈神经网络的基本结构和训练过程
反向传播算法
TensorFlow开发环境安装
“计算图”编程模型
深度学习中图像识别的操作原理
第三阶段循环神经网络原理及项目实战
语言模型及词嵌入
词嵌入的学习过程
循环神经网络的基本结构
时间序列反向传播算法
长短时记忆网络(LSTM)的基本结构
LSTM实现语言模型
第四阶段生成式对抗网络原理及项目实战
生成式对抗网络(GAN)的基本结构和原理
GAN的训练过程
GAN用于图片生成的实现
第五阶段深度学习的分布式处理及项目实战
多GPU并行实现
分布式并行的环境搭建
分布式并行实现
第六阶段深度强化学习及项目实战
强化学习介绍
智能体Agent的深度决策机制(上)
智能体Agent的深度决策机制(中)
智能体Agent的深度决策机制(下)
第七阶段车牌识别项目实战
数据集介绍及项目需求分析
OpenCV库介绍及车牌定位
车牌定位
车牌识别
学员项目案例评讲
第八阶段深度学习前沿技术简介
深度学习前沿技术简介
元学习
迁移学习等
详情查看深度学习。
python tensorflow GAN对抗神经网络中生成网络部分
python是当下十分火爆的编程语言,尤其在人工智能应用方面。如果有心从事编程方向的工作,最好到专业机构深入学习、多实践,更贴近市场,这样更有利于将来的发展。
用Keras生成面部Python实现
可采用的机器学习数据集:
两者都包含人脸图像。我把这两个组合成一个文件夹。
最常听到的两种图像生成技术是生成对抗网络(GAN)和LSTM网络。
LSTM训练的时候速度非常慢,GAN训练会快得多。实际结果花不到半小时,模糊的面孔就会开始出现。随着时间的推移,图像会更加逼真。
有许多GAN变种。我使用的一种称为深度卷积神经网络(DCGAN)。DCGAN的优点在于它使用了卷积层。卷积神经网络目前是存在的最佳图像分类算法。
生成对抗网络是由一位名叫Ian Goodfellow的研究员发明的,并于2014年引入了GAN。
GAN非常强大。利用正确的数据,网络架构和超参数,您可以生成非常逼真的图像。
将来,一些高级版本的GAN或其他一些内容生成算法可能会让我们做一些很酷的事情:
但GAN是如何运作的呢?
GAN实际上不是一个神经网络,而是两个。其中之一是Generator。它将随机值作为输入并生成图像。
第二是discriminator。它试图确定图像是假的还是真的。
训练GAN就像一场竞赛。Generator试图在愚弄discriminator时变得尽可能好。discriminator试图尽可能地将假图像与真实图像分开。
这将迫使他们两个都改善。理想情况下,这将在某种程度上导致以下情况:
在现实中,您需要确保一切正常(数据、体系结构、超参数)。GAN对超参数值的微小变化非常敏感。
导入库
第一步是导入所有需要的Python库。
FaceGenerator类
这段Python代码初始化了训练所需的一些重要变量。
将训练数据加载到模型中
此函数将文件夹的名称作为输入,并将该文件夹中的所有图像作为numpy数组返回。所有图像的大小都调整为__init__函数中指定的大小。
Shape=(图像的数量,宽度,高度,通道)。
神经网络
这两个函数定义了generator和discriminator。
神经网络模型训练
对于每个epoch:
训练结束后:
此函数可用于在训练后生成新图像。
训练GAN很难,当你成功时,这种感觉会非常有益。
此Python代码可以轻松用于其他图像数据集。请记住,您可能需要编辑网络体系结构和参数,具体取决于您尝试生成的图像。