本文目录一览:
- 1、python中pil如何导入?
- 2、python最佳入门教程(1): python的安装
- 3、python如何安装pil库
- 4、Python:这有可能是最详细的PIL库基本概念文章了
- 5、python的pillow库怎么使用
python中pil如何导入?
PIL是python的第三方图像处理库,我们可以值cmd使用pip install pillow命令安装pil库,下面我们就来看一下如何导入pil库。
python中可以使用import导入pil模块:
主要有以下两种导入方法:
import 模块名1 [as 别名1], 模块名2 [as 别名2],…:使用这种语法格式的 import 语句,会导入指定模块中的所有成员(包括变量、函数、类等)。不仅如此,当需要使用模块中的成员时,需用该模块名(或别名)作为前缀,否则 Python 解释器会报错。
from 模块名 import 成员名1 [as 别名1],成员名2 [as 别名2],…: 使用这种语法格式的 import 语句,只会导入模块中指定的成员,而不是全部成员。同时,当程序中使用该成员时,无需附加任何前缀,直接使用成员名(或别名)即可。
更多Python知识请关注Python自学网。
python最佳入门教程(1): python的安装
本教程基于python3.x, 是针对初学者的一系列python入门教程,在知乎上常有人问我计算机该怎么学,如何自学编程,笔者也是通过自学编程而进入IT这一行业的,回顾入行的这几年,从音视频流媒体辗转到人工智能深度学习,机器视觉,我是下了不少苦心的,对于如何学习有自己的一套理论和实践方法,很多人自言学编程不得其门,把学不会归咎于天分,其实芸芸众生,智力无别,你现在所看到的是技术大牛们一个个超凡绝顶(然知此绝顶非彼绝顶),看不到的是曾经的他们,也在每个昼夜里用心苦学。再者学一门技术,需要勤学刻苦,是需要讲究方法和基础的,方法对了就事半功倍,所谓的天才也无不是建立在扎实的基础之上。
在windows中安装python
首先打开python官网,点击页面downloads导航按钮,下载windows最新的基于web安装的安装器,右键以管理员身份运行 安装包,会出现如下界面:
将Add Python 3.7 to PATH 进行勾选,勾选此项的目的在于将python解释器加入系统环境变量,则在后续的python开发中可直接在windows 命令行中执行python脚本。所谓的环境变量是系统运行环境的一系列参数,比如这里的系统环境变量是PATH,PATH保存了与路径相关的参数,系统在路径查找中,会对PATH保存的路径进行搜索。
点击install Now按钮执行python的安装
打开windows命令行界面(按windows键输入cmd命令),输入python -V,出现python版本的相关输出,即表示安装成功。
在Linux系统中安装python
笔者的系统是CentOS, Linux系统默认有安装python,但是其版本是2.x,在这里笔者以源码安装的形式来安装python 3.X。首先进入python源码包页面 点击下载最新的gzip格式的python源码包,上传到服务器然后进行解压,解压后的目录结构如下图所示:
Linux中的configure与make
configure是Linux中的脚本配置工具,用来对源码的当前安装环境进行检测,若检测无误,会在当前目录生成一个供源码编译的Makefile脚本文件。
make是Linux系统下的编译安装工具,用来解释执行makefile文件中的脚本命令,编译命令。
现在我们开始编译安装python
(1) 在当前目录执行./configure(2) 输入 make sudo make install
若无指定安装目录,python会被默认安装在/usr/local目录中, 读者可以执行./configure --prefix=“你自定义的安装目录”来配置安装路径。安装完毕以后进入/usr/local/bin目录,输入 “python3.x -V” (这里的python3.x为你所安装的python版本),若出现与python版本的相关输出,即表示安装成功。
为安装的python设置软链接
安装的python可以以绝对路径的方式来执行,每次敲一大段路径来执行python未免麻烦,通常我们会给安装的python设置软链接,这里的软链接类似于windows的快捷方式。
输入以下命令来给python设置软链接,笔者安装的版本是python3.7, pip是python的包管理工具,会在教程的后续章节中进行详细讲解。
ln -s /usr/bin/python3 /usr/local/bin/python3.7 # 表示设置python3 为 /usr/local/bin/python3.7的快捷方式ln -s /usr/bin/pip3 /usr/local/bin/pip3.7 # 表示设置pip3 为 /usr/local/bin/pip3.7的快捷方式
python如何安装pil库
PIL:Python Imaging Library,已经是Python平台事实上的图像处理标准库了。
由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Python 3.x,又加入了许多新特性,因此,我们可以直接安装使用Pillow。
安装Python时已经把pip3也备好了,可以直接使用pip3安装PIL
命令行:pip3 install pillow
注意:
1.PIL安装包名字的pillow
2.使用pip3命令时,是要在pip3.exe所在路径下才能执行。一般pip3.exe是在python安装目录下的Script文件夹中。
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python如何安装pil库的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
Python:这有可能是最详细的PIL库基本概念文章了
PIL有如下几个模块:Image模块、ImageChops模块、ImageCrackCode模块、ImageDraw模块、ImageEnhance模块、ImageFile模块、ImageFileIO模块、ImageFilter模块、ImageFont模块、ImageGrab模块、ImageOps模块、ImagePath模块、ImageSequence模块、ImageStat模块、ImageTk模块、ImageWin模块、PSDraw模块
啊啊啊啊怎么这么多模块啊~~~!!!!
别担心我为你一一讲解
Image模块提供了一个相同名称的类,即image类,用于表示PIL图像。
Image模块是PIL中最重要的模块 ,比如创建、打开、显示、保存图像等功能,合成、裁剪、滤波等功能,获取图像属性功能,如图像直方图、通道数等。
Image模块的使用如下:
ImageChops模块包含一些算术图形操作,这些操作可用于诸多目的,比如图像特效,图像组合,算法绘图等等,通道操作只用于8位图像。
ImageChops模块的使用如下:
由于图像im_dup是im的复制过来的,所以它们的差为0,图像im_diff显示时为黑图。
ImageCrackCode模块允许用户检测和测量图像的各种特性。 这个模块只存在于PIL Plus包中。
因为我目前安装的PIL中没有包含这个模块。所以就不详细介绍了
ImageDraw模块为image对象提供了基本的图形处理功能。 例如,它可以创建新图像,注释或润饰已存在图像,为web应用实时产生各种图形。
ImageDraw模块的使用如下:
在del draw前后显示出来的图像im是完全一样的,都是在原有图像上画了两条对角线。
原谅我的报错
ImageEnhance模块包括一些用于图像增强的类。它们分别为 Color类、Brightness类、Contrast类和Sharpness类。
ImageEnhance模块的使用如下:
图像im0的亮度为图像im的一半。
ImageFile模块为图像打开和保存功能提供了相关支持功能。另外,它提供了一个Parser类,这个类可以一块一块地对一张图像进行解码(例如,网络联接中接收一张图像)。这个类的接口与标准的sgmllib和xmllib模块的接口一样。
ImageFile模块的使用如下:
因为所打开图像大小大于1024个byte,所以报错:图像不完整。
所以大家想看的可以自行去找一个小一点的图看一下
ImageFileIO模块用于从一个socket或者其他流设备中读取一张图像。 不赞成使用这个模块。 在新的code中将使用ImageFile模块的Parser类来代替它。
ImageFilter模块包括各种滤波器的预定义集合,与Image类的filter方法一起使用。该模块包含这些图像增强的滤器:BLUR,CONTOUR,DETAIL,EDGE_ENHANCE,EDGE_ENHANCE_MORE,EMBOSS,FIND_EDGES,SMOOTH,SMOOTH_MORE和SHARPEN。
ImageFilter模块的使用如下:
ImageFont模块定义了一个同名的类,即ImageFont类。这个类的实例中存储着bitmap字体,需要与ImageDraw类的text方法一起使用。
PIL使用自己的字体文件格式存储bitmap字体。用户可以使用pilfont工具包将BDF和PCF字体描述器(Xwindow字体格式)转换为这种格式。
PIL Plus包中才会支持矢量字体。
ImageGrab模块用于将屏幕上的内容拷贝到一个PIL图像内存中。 当前的版本只在windows操作系统上可以工作。
ImageGrab模块的使用如下:
图像im显示出笔记本当前的窗口内容,就是类似于截图的工具
ImageOps模块包括一些“ready-made”图像处理操作。 它可以完成直方图均衡、裁剪、量化、镜像等操作 。大多数操作只工作在L和RGB图像上。
ImageOps模块的使用如下:
图像im_flip为图像im垂直方向的镜像。
ImagePath模块用于存储和操作二维向量数据。Path对象将被传递到ImageDraw模块的方法中。
ImagePath模块的使用如下:
ImageSequence模块包括一个wrapper类,它为图像序列中每一帧提供了迭代器。
ImageSequence模块的使用如下:
后面两次show()函数调用,分别显示第1张和第11张图像。
ImageStat模块计算一张图像或者一张图像的一个区域的全局统计值。
ImageStat模块的使用如下:
ImageTk模块用于创建和修改BitmapImage和PhotoImage对象中的Tkinter。
ImageTk模块的使用如下:
这个是我一直不太懂的有没有大佬能帮我解决一下在线等~急!
PSDraw模块为Postscript打印机提供基本的打印支持。用户可以通过这个模块打印字体,图形和图像。
PIL中所涉及的基本概念有如下几个: 通道(bands)、模式(mode)、尺寸(size)、坐标系统(coordinate system)、调色板(palette)、信息(info)和滤波器(filters)。
每张图片都是由一个或者多个数据通道构成。PIL允许在单张图片中合成相同维数和深度的多个通道。
以RGB图像为例,每张图片都是由三个数据通道构成,分别为R、G和B通道。而对于灰度图像,则只有一个通道。
对于一张图片的通道数量和名称,可以通过getbands()方法来获取。getbands()方法是Image模块的方法,它会返回一个字符串元组(tuple)。该元组将包括每一个通道的名称。
Python的元组与列表类似,不同之处在于元组的元素不能修改,元组使用小括号,列表使用方括号,元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可。
getbands()方法的使用如下:
图像的模式定义了图像的类型和像素的位宽。当前支持如下模式:
1:1位像素,表示黑和白,但是存储的时候每个像素存储为8bit。
L:8位像素,表示黑和白。
P:8位像素,使用调色板映射到其他模式。
I:32位整型像素。
F:32位浮点型像素。
RGB:3x8位像素,为真彩色。
RGBA:4x8位像素,有透明通道的真彩色。
CMYK:4x8位像素,颜色分离。
YCbCr:3x8位像素,彩色视频格式。
PIL也支持一些特殊的模式,包括RGBX(有padding的真彩色)和RGBa(有自左乘alpha的真彩色)。
可以通过mode属性读取图像的模式。其返回值是包括上述模式的字符串。
mode 属性 的使用如下:
通过size属性可以获取图片的尺寸。这是一个二元组,包含水平和垂直方向上的像素数。
mode属性的使用如下:
PIL使用笛卡尔像素坐标系统,坐标(0,0)位于左上角。注意:坐标值表示像素的角;位于坐标(0,0)处的像素的中心实际上位于(0.5,0.5)。
坐标经常用于二元组(x,y)。长方形则表示为四元组,前面是左上角坐标。例如:一个覆盖800x600的像素图像的长方形表示为(0,0,800,600)。
调色板模式 ("P")使用一个颜色调色板为每个像素定义具体的颜色值
使用info属性可以为一张图片添加一些辅助信息。这个是字典对象。加载和保存图像文件时,多少信息需要处理取决于文件格式。
info属性的使用如下:
对于将多个输入像素映射为一个输出像素的几何操作,PIL提供了4个不同的采样滤波器:
NEAREST:最近滤波。 从输入图像中选取最近的像素作为输出像素。它忽略了所有其他的像素。
BILINEAR:双线性滤波。 在输入图像的2x2矩阵上进行线性插值。注意:PIL的当前版本,做下采样时该滤波器使用了固定输入模板。
BICUBIC:双立方滤波。 在输入图像的4x4矩阵上进行立方插值。注意:PIL的当前版本,做下采样时该滤波器使用了固定输入模板。
ANTIALIAS:平滑滤波。 这是PIL 1.1.3版本中新的滤波器。对所有可以影响输出像素的输入像素进行高质量的重采样滤波,以计算输出像素值。在当前的PIL版本中,这个滤波器只用于改变尺寸和缩略图方法。
注意:在当前的PIL版本中,ANTIALIAS滤波器是下采样 (例如,将一个大的图像转换为小图) 时唯一正确的滤波器。 BILIEAR和BICUBIC滤波器使用固定的输入模板 ,用于固定比例的几何变换和上采样是最好的。Image模块中的方法resize()和thumbnail()用到了滤波器。
resize()方法的定义为:resize(size, filter=None)= image
resize()方法的使用如下:
对参数filter不赋值的话,resize()方法默认使用NEAREST滤波器。如果要使用其他滤波器可以通过下面的方法来实现:
thumbnail ()方法的定义为:im.thumbnail(size, filter=None)
thumbnail ()方法的使用如下:
这里需要说明的是,方法thumbnail()需要保持宽高比,对于size=(200,200)的输入参数,其最终的缩略图尺寸为(182, 200)。
对参数filter不赋值的话,方法thumbnail()默认使用NEAREST滤波器。如果要使用其他滤波器可以通过下面的方法来实现:
python的pillow库怎么使用
Pillow是Python里的图像处理库(PIL:Python Image Library),提供了了广泛的文件格式支持,强大的图像处理能力,主要包括图像储存、图像显示、格式转换以及基本的图像处理操作等。
1)使用 Image 类
PIL最重要的类是 Image class, 你可以通过多种方法创建这个类的实例;你可以从文件加载图像,或者处理其他图像, 或者从 scratch 创建。
要从文件加载图像,可以使用open( )函数,在Image模块中:
[python] view plain copy
from PIL import Image
im = Image.open("E:/photoshop/1.jpg")
加载成功后,将返回一个Image对象,可以通过使用示例属性查看文件内容:
[python] view plain copy
print(im.format, im.size, im.mode)
('JPEG', (600, 351), 'RGB')
format 这个属性标识了图像来源。如果图像不是从文件读取它的值就是None。size属性是一个二元tuple,包含width和height(宽度和高度,单位都是px)。 mode 属性定义了图像bands的数量和名称,以及像素类型和深度。常见的modes 有 “L” (luminance) 表示灰度图像, “RGB” 表示真彩色图像, and “CMYK” 表示出版图像。
如果文件打开错误,返回 IOError 错误。
只要你有了 Image 类的实例,你就可以通过类的方法处理图像。比如,下列方法可以显示图像:
[python] view plain copy
im.show()
2)读写图像
PIL 模块支持大量图片格式。使用在 Image 模块的 open() 函数从磁盘读取文件。你不需要知道文件格式就能打开它,这个库能够根据文件内容自动确定文件格式。要保存文件,使用 Image 类的 save() 方法。保存文件的时候文件名变得重要了。除非你指定格式,否则这个库将会以文件名的扩展名作为格式保存。
加载文件,并转化为png格式:
[python] view plain copy
"Python Image Library Test"
from PIL import Image
import os
import sys
for infile in sys.argv[1:]:
f,e = os.path.splitext(infile)
outfile = f +".png"
if infile != outfile:
try:
Image.open(infile).save(outfile)
except IOError:
print("Cannot convert", infile)
save() 方法的第二个参数可以指定文件格式。
3)创建缩略图
缩略图是网络开发或图像软件预览常用的一种基本技术,使用Python的Pillow图像库可以很方便的建立缩略图,如下:
[python] view plain copy
# create thumbnail
size = (128,128)
for infile in glob.glob("E:/photoshop/*.jpg"):
f, ext = os.path.splitext(infile)
img = Image.open(infile)
img.thumbnail(size,Image.ANTIALIAS)
img.save(f+".thumbnail","JPEG")
上段代码对photoshop下的jpg图像文件全部创建缩略图,并保存,glob模块是一种智能化的文件名匹配技术,在批图像处理中经常会用到。
注意:Pillow库不会直接解码或者加载图像栅格数据。当你打开一个文件,只会读取文件头信息用来确定格式,颜色模式,大小等等,文件的剩余部分不会主动处理。这意味着打开一个图像文件的操作十分快速,跟图片大小和压缩方式无关。
4)图像的剪切、粘贴与合并操作
Image 类包含的方法允许你操作图像部分选区,PIL.Image.Image.crop 方法获取图像的一个子矩形选区,如:
[python] view plain copy
# crop, paste and merge
im = Image.open("E:/photoshop/lena.jpg")
box = (100,100,300,300)
region = im.crop(box)
矩形选区有一个4元元组定义,分别表示左、上、右、下的坐标。这个库以左上角为坐标原点,单位是px,所以上诉代码复制了一个 200x200 pixels 的矩形选区。这个选区现在可以被处理并且粘贴到原图。
[python] view plain copy
region = region.transpose(Image.ROTATE_180)
im.paste(region, box)
当你粘贴矩形选区的时候必须保证尺寸一致。此外,矩形选区不能在图像外。然而你不必保证矩形选区和原图的颜色模式一致,因为矩形选区会被自动转换颜色。
5)分离和合并颜色通道
对于多通道图像,有时候在处理时希望能够分别对每个通道处理,处理完成后重新合成多通道,在Pillow中,很简单,如下:
[python] view plain copy
r,g,b = im.split()
im = Image.merge("RGB", (r,g,b))
对于split( )函数,如果是单通道的,则返回其本身,否则,返回各个通道。
6)几何变换
对图像进行几何变换是一种基本处理,在Pillow中包括resize( )和rotate( ),如用法如下:
[python] view plain copy
out = im.resize((128,128))
out = im.rotate(45) # degree conter-clockwise
其中,resize( )函数的参数是一个新图像大小的元祖,而rotate( )则需要输入顺时针的旋转角度。在Pillow中,对于一些常见的旋转作了专门的定义:
[python] view plain copy
out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)
7)颜色空间变换
在处理图像时,根据需要进行颜色空间的转换,如将彩色转换为灰度:
[python] view plain copy
cmyk = im.convert("CMYK")
gray = im.convert("L")
8)图像滤波
图像滤波在ImageFilter 模块中,在该模块中,预先定义了很多增强滤波器,可以通过filter( )函数使用,预定义滤波器包括:
BLUR、CONTOUR、DETAIL、EDGE_ENHANCE、EDGE_ENHANCE_MORE、EMBOSS、FIND_EDGES、SMOOTH、SMOOTH_MORE、SHARPEN。其中BLUR就是均值滤波,CONTOUR找轮廓,FIND_EDGES边缘检测,使用该模块时,需先导入,使用方法如下:
[python] view plain copy
from PIL import ImageFilter
imgF = Image.open("E:/photoshop/lena.jpg")
outF = imgF.filter(ImageFilter.DETAIL)
conF = imgF.filter(ImageFilter.CONTOUR)
edgeF = imgF.filter(ImageFilter.FIND_EDGES)
imgF.show()
outF.show()
conF.show()
edgeF.show()
除此以外,ImageFilter模块还包括一些扩展性强的滤波器:
class PIL.ImageFilter.GaussianBlur(radius=2)
Gaussian blur filter.
参数:
radius – Blur radius.
class PIL.ImageFilter.UnsharpMask(radius=2, percent=150, threshold=3)
Unsharp mask filter.
See Wikipedia’s entry on digital unsharp masking for an explanation of the parameters.
class PIL.ImageFilter.Kernel(size, kernel, scale=None, offset=0)
Create a convolution kernel. The current version only supports 3x3 and 5x5 integer and floating point kernels.
In the current version, kernels can only be applied to “L” and “RGB” images.
参数:
size – Kernel size, given as (width, height). In the current version, this must be (3,3) or (5,5).
kernel – A sequence containing kernel weights.
scale – Scale factor. If given, the result for each pixel is divided by this value. the default is the sum of the kernel weights.
offset – Offset. If given, this value is added to the result, after it has been divided by the scale factor.
class PIL.ImageFilter.RankFilter(size, rank)
Create a rank filter. The rank filter sorts all pixels in a window of the given size, and returns therank‘th value.
参数:
size – The kernel size, in pixels.
rank – What pixel value to pick. Use 0 for a min filter, size * size / 2 for a median filter, size * size - 1 for a max filter, etc.
class PIL.ImageFilter.MedianFilter(size=3)
Create a median filter. Picks the median pixel value in a window with the given size.
参数:
size – The kernel size, in pixels.
class PIL.ImageFilter.MinFilter(size=3)
Create a min filter. Picks the lowest pixel value in a window with the given size.
参数:
size – The kernel size, in pixels.
class PIL.ImageFilter.MaxFilter(size=3)
Create a max filter. Picks the largest pixel value in a window with the given size.
参数:
size – The kernel size, in pixels.
class PIL.ImageFilter.ModeFilter(size=3)
Create a mode filter. Picks the most frequent pixel value in a box with the given size. Pixel values that occur only once or twice are ignored; if no pixel value occurs more than twice, the original pixel value is preserved.
参数:
size – The kernel size, in pixels.
更多详细内容可以参考:PIL/ImageFilter
9)图像增强
图像增强也是图像预处理中的一个基本技术,Pillow中的图像增强函数主要在ImageEnhance模块下,通过该模块可以调节图像的颜色、对比度和饱和度和锐化等:
[python] view plain copy
from PIL import ImageEnhance
imgE = Image.open("E:/photoshop/lena.jpg")
imgEH = ImageEnhance.Contrast(imgE)
imgEH.enhance(1.3).show("30% more contrast")
图像增强:
class PIL.ImageEnhance.Color(image)
Adjust image color balance.
This class can be used to adjust the colour balance of an image, in a manner similar to the controls on a colour TV set. An enhancement factor of 0.0 gives a black and white image. A factor of 1.0 gives the original image.
class PIL.ImageEnhance.Contrast(image)
Adjust image contrast.
This class can be used to control the contrast of an image, similar to the contrast control on a TV set. An enhancement factor of 0.0 gives a solid grey image. A factor of 1.0 gives the original image.
class PIL.ImageEnhance.Brightness(image)
Adjust image brightness.
This class can be used to control the brighntess of an image. An enhancement factor of 0.0 gives a black image. A factor of 1.0 gives the original image.
class PIL.ImageEnhance.Sharpness(image)
Adjust image sharpness.
This class can be used to adjust the sharpness of an image. An enhancement factor of 0.0 gives a blurred image, a factor of 1.0 gives the original image, and a factor of 2.0 gives a sharpened image.
图像增强的详细内容可以参考:PIL/ImageEnhance
除了以上介绍的内容外,Pillow还有很多强大的功能:
PIL.Image.alpha_composite(im1, im2)
PIL.Image.blend(im1, im2, alpha)
PIL.Image.composite(image1, image2, mask)
PIL.Image.eval(image, *args)
PIL.Image.fromarray(obj, mode=None)
PIL.Image.frombuffer(mode, size, data, decoder_name='raw', *args)