您的位置:

python与cpython(的python)

本文目录一览:

CPython是什么?PyPy是什么?Python和这两个东西有什么关系

CPython:是用C语言实现Pyhon,是目前应用最广泛的解释器。最新的语言特性都是在这个上面先实现,基本包含了所有第三方库支持,但是CPython有几个缺陷,一是全局锁使Python在多线程效能上表现不佳,二是CPython无法支持JIT(即时编译),导致其执行速度不及Java和Javascipt等语言。于是出现了Pypy。

Pypy:是用Python自身实现的解释器。针对CPython的缺点进行了各方面的改良,性能得到很大的提升。最重要的一点就是Pypy集成了JIT。但是,Pypy无法支持官方的C/Python API,导致无法使用例如Numpy,Scipy等重要的第三方库。这也是现在Pypy没有被广泛使用的原因吧。

而PyPy与CPython的不同在于,别的一些python实现如CPython是使用解释执行的方式,这样的实现方式在性能上是很凄惨的。而PyPy使用了JIT(即时编译)技术,在性能上得到了提升。

Python的解释器:

1、由于Python是动态编译的语言,和C/C++、Java或者Kotlin等静态语言不同,它是在运行时一句一句代码地边编译边执行的,而Java是提前将高级语言编译成了JVM字节码,运行时直接通过JVM和机器打交道,所以进行密集计算时运行速度远高于动态编译语言。

2、PyPy,它使用了JIT(即时编译)技术,混合了动态编译和静态编译的特性,仍然是一句一句编译源代码,但是会将翻译过的代码缓存起来以降低性能损耗。相对于静态编译代码,即时编译的代码可以处理延迟绑定并增强安全性。绝大部分 Python代码都可以在PyPy下运行,但是PyPy和CPython有一些是不同的。

python的作用

现在互联网发展迅速,众多行业巨头,都已经转投到人工智能领域,而人工智能的首选编程语言就是python,所以学好Python能够从事的工作还是很多的,而且前景非常不错。

学完python可以应用于以下领域:

①Web 和 Internet开发

②科学计算和统计

③人工智能

④桌面界面开发

⑤软件开发

⑥后端开发

⑦网络爬虫

可以从事的岗位也很多,比如Python爬虫工程师,大数据工程师等等!

互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。

想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。

祝你学有所成,望采纳。

cython与python的不同有哪些

Cython是Python的一个超集,结合了Python的易用性和原生代码的速度,可以编译成C语言,产生的性能提升可以从几个百分点到几个数量级,具体取决于手头的任务。

使用Cython,你可以避开Python的许多原生限制,或者完全超越Python,而无需放弃Python的简便性和便捷性。

Python代码可以直接调用C模块。这些C模块可以是通用的C库或专门为Python工作的库。Cython生成第二种类型的模块:与Python内部对话的C库,可以与现有的Python代码绑定在一起。

Cython代码在设计上看起来很像Python代码。如果你给Cython编译器提供了一个Python程序,它将会按原样接受它,但是Cython的原生加速器都不会起作用。但是如果你用Cython的特殊语法来修饰Python代码,那么Cython就可以用快速的C代替慢的Python对象。

请注意,Cython的方法是渐进的。这意味着开发人员可以从现有的Python应用程序开始,通过对代码立刻进行更改来加快速度,而不是从头开始重写整个应用程序。

这种方法通常与软件性能问题的性质相吻合。在大多数程序中,绝大多数CPU密集型代码都集中在一些热点上,也就是帕累托原则的一个版本,也被称为“80/20”规则。因此,Python应用程序中的大部分代码不需要进行性能优化,只需要几个关键部分。你可以逐渐将这些热点转换为Cython,从而获得你最需要的性能提升。程序的其余部分可以保留在Python中,以方便开发人员。

相关推荐:《Python入门教程》

Cython优势

除了能够加速已经编写的代码之外,Cython还具有其他几个优点:

使用外部C库可以更快

像NumPy这样的Python软件包可以在Python界面中打包C库,使它们易于使用。但是,这些包在Python和C之间来回切换会减慢速度。Cython可以让你直接与底层库进行通信,而不需要Python(也支持C ++库)。

可以同时使用C和Python内存管理

如果你使用Python对象,它们就像在普通的Python中一样被内存管理和垃圾收集。但是如果你想创建和管理自己的C级结构,并使用malloc/free来处理它们,你可以这样做,只记得自己清理一下。

可以根据需要选择安全性或速度

Cython通过decorator 和编译器指令(例如@boundscheck(False))自动执行对C中弹出的常见问题的运行时检查,例如对数组的超出边界访问。因此,由Cython生成的C代码默认比手动C代码安全得多。

如果确信在运行时不需要这些检查,则可以在整个模块上或仅在选择功能上禁用它们以获得额外的编译速度。

Cython还允许本地访问使用“缓冲协议”的Python结构,以直接访问存储在内存中的数据(无需中间复制)。Cython的“记忆视图”可以高速地在这些结构上进行工作,并且具有适合任务的安全级别。

Cython C代码可以从释放GIL中受益

Python的全局解释器锁(Global Interpreter Lock,GIL)同步解释器中的线程,保护对Python对象的访问并管理资源的争用。但GIL被广泛批评为Python性能的绊脚石,特别是在多核系统上。

如果有一段代码不会引用Python对象并执行长时间运行,那么可以使用nogil:指令将其标记为允许它在没有GIL的情况下运行。这使得Python中间人可以做其他事情,并允许Cython代码使用多个内核(附加工作)。

Cython可以使用Python类型的提示语法

Python有一个类型提示语法,主要由linters和代码检查器使用,而不是CPython解释器。 Cython有它自己的代码装饰的自定义语法,但是最近修改了Cython,你可以使用Python类型提示语法为Cython提供类型提示。

Cython限制

请记住,Cython不是一个魔术棒。它不会自动将每一个poky Python代码变成极速的C代码。为了充分利用Cython,你必须明智地使用它,并理解它的局限性:

常规Python代码的加速很少

当Cython遇到Python代码时,它不能完全翻译成C语言,它将这些代码转换成一系列对Python内部的C调用。这相当于将Python的解释器从执行循环中提取出来,这使得代码默认加速了15%到20%。请注意,这是最好的情况。在某些情况下,可能看不到性能改善,甚至性能下降。

原生Python数据结构有一点加速

Python提供了大量的数据结构 - 字符串,列表,元组,字典等等。它们对于开发者来说非常方便,而且他们自带了自动内存管理功能,但是他们比纯C慢。

Cython让你继续使用所有的Python数据结构,尽管没有太多的加速。这又是因为Cython只是在Python运行时调用创建和操作这些对象的C API。因此,Python数据结构的行为与Cython优化的Python代码大致相同:有时会得到一个提升,但只有一点。

Cython代码运行速度最快时,“纯C”

如果你在C中有一个标有cdef关键字的函数,那么它的所有变量和内联函数调用都是纯C的,所以它的运行速度可以和C一样快。 但是,如果该函数引用任何Python原生代码(如Python数据结构或对内部Python API的调用),则该调用将成为性能瓶颈。

幸运的是,Cython提供了一种方法来发现这些瓶颈:一个源代码报告,一目了然地显示您的Cython应用程序的哪些部分是纯C以及哪些部分与Python交互。 对应用程序进行了更好的优化,就会减少与Python的交互。

为Cython应用程序生成的源代码报告。 白色区域纯C;黄色区域显示与Python内部的交互。一个精心优化的Cython程序将尽可能的黄色。 展开的最后一行显示了解释其相应Cython代码的C代码。

Cython NumPy

Cython改进了基于C的第三方数字运算库(如NumPy)的使用。由于Cython代码编译为C,它可以直接与这些库进行交互,并将Python的瓶颈带出循环。

但是NumPy特别适用于Cython。 Cython对NumPy中的特定结构具有本地支持,并提供对NumPy数组的快速访问。在传统的Python脚本中使用的熟悉的NumPy语法可以在Cython中使用。

但是,如果要创建Cython和NumPy之间最接近的绑定,则需要使用Cython的自定义语法进一步修饰代码。例如,cimport语句允许Cython代码在编译时在库中查看C级构造,以实现最快的绑定。

由于NumPy被广泛使用,Cython支持NumPy“开箱即用”。如果你安装了NumPy,你可以在你的代码中声明cimport numpy,然后添加进一步的装饰来使用暴露的函数。

Cython分析和性能

可以通过分析代码并亲眼目睹瓶颈在哪里获得最佳性能。Cython为Python的cProfile模块提供钩子,因此可以使用Python自己的分析工具来查看Cython代码的执行情况。无需在工具组之间切换;可以继续所熟悉和喜爱的Python世界中工作。

它有助于记住所有情况下,Cython不是魔术,仍然适用明智的现实世界的表现实践。在Python和Cython之间来回穿梭越少,你的应用运行得越快。

例如,如果你有一个你想要在Cython中处理的对象的集合,那么不要在Python中迭代它,并且在每一步调用一个Cython函数。将整个集合传递给你的Cython模块并在那里迭代。这种技术经常在管理数据的库中使用,因此这是在自己的代码中模拟的好模型。

我们使用Python是因为它为程序员提供了便利,并且能够快速开发。有时程序员的工作效率是以牺牲性能为代价的。使用Cython,只需要一点点额外的努力就可以给你两全其美的好处。

c语言和python语言哪个更值得学?

c语言和python语言两者相比较,c语言更值得学,具体原因如下:

1、C语言是第一门接触的编程语言,可见它的重要性。

2、C语言是一种面向过程的语言,而Python是一种面向对象的解释型计算机程序设计语言。学生需要先了解什么是面向过程,然后去了解什么是面向对象。

3、C语言的语法结构比较严谨,可以这样说,如果学生把C语言学透彻,那学其他的语言就简单很多,可谓是一通全通。

如需学习c语言和python语言推荐选择达内教育,该机构是引领行业的职业教育公司,致力于面向IT互联网行业培养人才,达内大型T专场招聘会每年定期举行,为学员搭建快捷高效的双选绿色通道,在提升学员的面试能力、积累面试经验同时也帮助不同技术方向的达内学员快速就业。

想了解更多有关c语言和python的相关信息,推荐咨询达内教育。该机构致力于面向IT互联网行业,培养软件开发工程师、测试工程师、UI设计师、网络营销工程师、会计等职场人才,拥有行业内完善的教研团队,强大的师资力量,确保学员利益,全方位保障学员学习;更是与多家企业签订人才培养协议,全面助力学员更好就业。

c语言和python区别

具体区别有三方面:

一、语言不同。

其中C++语言属于编译型语言,程序在执行之前需要一个专门的编译过程,把程序编译成为机器语言的文件。

Python语言是解释型语言,该语言编写的程序不需进行预先编译,以文本方式储存代码,会将代码一句一句直接运行。

二、时间点不同。

两者区别在于翻译时间点不同。C++在前,而Python在后。

三、兼容性不同。

Python解释器易于扩展,可以使用C或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。

Python 也可用于可定制化软件中的扩展程序语言。Python丰富的标准库,提供了适用于各个主要系统平台的源码或机器码。

原理方面:

1、运行效率:C++ Python。

Python代码和C++最终都会变成CPU指令来跑,但一般情况下,比如反转和合并两个字符串,Python最终转换出来的CPU指令会比C++ 多很多。

首先,Python东西比C++多,经过了更多层,Python中甚至连数字都是object。

其次,Python是解释执行的,和物理机CPU之间多了解释器这层,而C++是编译执行的,直接就是机器码,编译的时候编译器又可以进行一些优化。

2、开发效率:Python C++。

Python一两句代码就搞定的东西,C++往往要写一大堆。用C++解析下Json你就明白了,很可能好几天过去了,你还在调bug,刚调好bug又内存泄漏了。