您的位置:

逆天编程之python引力(python引力模型)

本文目录一览:

用Python语言计算万有引力怎么敲

#万有引力计算公式

#引力常量

G = 6.66*pow(10, -11)

#物体1质量

M = 60

#物体2质量

m = 60

#两个物体距离

r = 10

F = G*M*m/pow(r, 2)

print(F)

根据这个公式写的,你可以自己修改每个参数的值

送你八本Python神书,让你修成程序员神功!

自从上班以来,我就很少看纸质书了,逐渐养成了看电子书的习惯,究其原因是纸质书每年要花掉我近千元钱,哈哈,其实主要原因是我养成了收集电子书的习惯,总能找到自己喜欢的电子书,在搜寻中, 我收集了8本python电子书资料,这8本书籍适合初学python丶进阶python丶精通python!

而最近几年内容付费如火如荼,付费成了互联网经济的主流,我也很珍视自己的python电子书资源,眼下很多书在电商平台的电子版都是十几块一本, 现在我决定全部免费赠送给大家啦 。

本书内容

本书描述了Python程序的基本构件:类型、操作符、语句、函数、模块、类以及异常,介绍了更多高级主题,包括复杂的实例。

本书适合Python初学者,以及已经入门但想继续学习和提高自身Python技巧的程序员。

本书内容

本书是一本Python入门书籍,适合对计算机了解不多,没有学过编程,但对编程感兴趣的读者学习使用。这本书以习题的方式引导读者一步一步学习编程,从简单的打印一直讲到完整项目的实现,让初学者从基础的编程技术入手,最终体验到软件开发的基本过程。

本书结构非常简单,共包括52个习题,其中26个覆盖了输入/输出、变量和函数三个主题,另外26个覆盖了一些比较高级的话题,如条件判断、循环、类和对象、代码测试及项目的实现等。每一章的格式基本相同,以代码习题开始,按照说明编写代码,运行并检查结果,然后再做附加练习。

本书内容

【技术大咖推荐】

【本书特色】

【主要内容】

本书致力于帮助Python开发人员挖掘这门语言及相关程序库的优秀特性,避免重复劳动,同时写出简洁、流畅、易读、易维护,并且具有地道Python风格的代码。本书尤其深入探讨了Python语言的高级用法,涵盖数据结构、Python风格的对象、并行与并发,以及元编程等不同的方面。

本书适合中高级Python软件开发人员阅读参考。

本书内容

本书包括Python程序设计的方方面面,首先从Python的安装开始,随后介绍了Python的基础知识和基本概念,包括列表、元组、字符串、字典以及各种语句。然后循序渐进地介绍了一些相对高级的主题,包括抽象、异常、魔法方法、属性、迭代器。此后探讨了如何将Python与数据库、网络、C语言等工具结合使用,从而发挥出Python的强大功能,同时介绍了Python程序测试、打包、发布等知识。最后,作者结合前面讲述的内容,按照实际项目开发的步骤向读者介绍了几个具有实际意义的Python项目的开发过程。

本书内容

Google和YouTube由于Python的高可适应性、易于维护以及适合于快速开发而采用它。如果你想要编写高质量、高效的并且易于与其他语言和工具集成的代码,《Python学习手册:第4 版》将帮助你使用Python快速实现这一点,不管你是编程新手还是Python初学者。本书是易于掌握和自学的教程,根据作者Python专家Mark Lutz的著名培训课程编写而成。

《Python学习手册:第4版》每一章都包含关于Python语言的关键内容的独立的一课,并且包含了一个独特的“练习题”部分,其中带有实际的练习和测试,以便你可以练习新的技能并随着学习而测试自己的理解。你会发现众多带有注释的示例以及图表,它们将帮助你开始学习Python 3.0。

《Python学习手册:第4版》包括以下内容:

本书适合任何想要通过Python学习编程的读者,尤其适合缺乏编程基础的初学者。通过阅读本书,读者将能利用强大的编程语言和工具,并且会体会到Python编程的快乐。

本书内容

Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。Python可以用于很多的领域,从科学计算到 游戏 开发。

《Python编程初学者指南》内容浅显易懂,示例轻松活泼,是国际畅销的Python初学者教程,适合对Python感兴趣的初级和中级读者学习参考。

8本 Python 书籍免费领取方式:

(每位粉丝限领3本,快来私信我领取 吧,先到先得!)

python 优点

Python是目前公认的全球5大流行语言之一,从云计算、大数据到人工智能,Python无处不在,百度、阿里巴巴、腾讯等一系列大公司都在使用Python完成各种任务,Python发展如此迅猛,究竟有什么优势呢?

1. 简单

Python采用极简主义设计思想,语法简单优雅,不需要很复杂的代码和逻辑,即可实现强大的功能,很适合初学者学习!

2. 易学

Python学习简单、上手快,不需要面对复杂的语法环境,即可实现所需功能,学习曲线很低,可以通过命令行交互环境学习Python编程。

3. 开源免费

Python所有内容都是开源免费的,可以直接下载安装使用,还可以对其源码进行修改,十分便捷!

4. 自由内存管理

Python内存管理是自动完成的,Python开发人员仅需专注程序本身,无需关注内存管理。

5. 跨平台、可移植性

Python具有良好的跨平台和可移植性能,可以被移植到大多数平台下面,如Windows、MacOS、Linux、Andorid和IOS等。

6. 解释性

Python解释器可以把源代码转换成字节码的中间形式,然后再把它翻译成计算机使用的机器语言并运行,无需编译环节,可以减少编译过程的时耗,提高Python运行速度。

7. 面向对象

Python既支持面向过程,又支持面向对象,这样编程更加灵活。

8. 可扩展性

Python除了使用Python语言本身编写外,还可以混合使用C语言、Java语言编写。

9. 丰富的第三方库

Python本身具有丰富强大的库,可以实现很多强大的功能。

使用Matplotlib模拟Python中的三维太阳系

编程的一个用途是通过模拟来帮助我们理解真实世界。这一技术被应用于科学、金融和许多其他定量领域。只要控制现实世界属性的“规则”是已知的,你就可以编写一个计算机程序来 探索 你遵循这些规则所得到的结果。在本文中,您将 用Python模拟三维太阳系 使用流行的可视化库Matplotlib

在这篇文章,你将能够用Python创建你自己的3D太阳系,你可以用你想要的多少太阳和行星。下面是一个简单的太阳系的一个例子,它有一个太阳和两个行星:

你还可以打开动画地板上的二维投影,更好地展示太阳系的三维本质。下面是同样的太阳系模拟,包括2D投影:

下面是这篇文章的概要,以便您知道接下来会发生什么:

在本文中,您将使用面向对象的编程和Matplotlib。如果您希望阅读更多关于任何一个主题的内容,您可以阅读:

让我们从使用Matplotlib在Python中模拟一个3D太阳系开始。

太阳系中的太阳、行星和其他天体都是运动中的天体,它们相互吸引。引力在任何两个物体之间施加。

如果这两个对象有大量M_1和M_2是距离r然后,你可以用以下公式计算它们之间的引力:

常数G是一个引力常数。您将看到如何在模拟的版本中忽略这个常量,在本文中,您将使用任意单位的质量和距离,而不是kg和m。

一旦你知道了两个物体之间的引力,你就可以计算出加速度。a每个物体都是由于这种引力而经历的,使用以下公式:

使用这个加速度,你可以调整运动物体的速度。当速度发生变化时,速度和方向都会发生变化。

当用Python模拟一个三维太阳系时,你需要用三维空间来表示太阳系。因此,这个3D空间中的每个点都可以用三个数字来表示, x -, y -和 z -坐标。例如,如果你想把太阳放在太阳系的中心,你可以将太阳的位置表示为 (0, 0, 0) .

您还需要在3D空间中表示向量。矢量具有大小和方向。你需要像速度、加速度和力这样的量的矢量,因为这些量都有一个方向和一个震级。

在本文中,我将不详细讨论向量代数。相反,我将陈述您需要的任何结果。你可以读到更多关于向量与向量代数如果你愿意的话。

为了在代码中更容易地处理向量,您可以创建一个类来处理它们。编写这个类将作为对类和面向对象编程的快速刷新。你可以读到用Python进行面向对象的编程如果你觉得你需要一个更彻底的解释。虽然您也可以创建一个类来处理3D空间中的点,但这并不是必要的,在本文中我也不会创建一个类。

如果您熟悉向量和面向对象编程,可以跳过本节,只需在定义 Vector 班级。

创建一个名为 vectors.py 中,您将定义 Vector 班级。您将使用此脚本定义类并对其进行测试。然后,可以删除最后的测试代码,只需在这个脚本中保留类定义:

这个 __init__() 方法的 Vector 类有三个参数,表示每个轴上的值。每个参数的默认值为 0 表示该轴的原点。虽然我们不喜欢在Python中使用单个字母名称, x , y ,和 z 是恰当的,因为它们代表了数学中常用的笛卡尔坐标系的术语。

您还定义了两个Dunder方法来将对象表示为一个字符串:

在代码段的末尾,您可以更多地了解这两种类型的字符串表示之间的差异。Python编码书第9章 .

测试代码块的输出如下:

在Python项目中的这个3D太阳系中,如果 Vector 类是可索引的,以便您可以使用 [] 带有索引以提取其中一个值的符号。使用当前形式的类,如果添加 print(test[0]) 在您的脚本中,您将得到一个 TypeError 说 Vector 对象不可订阅。您可以通过向类定义中添加另一个Dud方法来修复这个问题:

通过定义 __getitem__() ,你做了 Vector 可索引的类。向量中的第一项是 x 的价值。 y 的价值。 z 。任何其他索引都会引发错误。测试代码块的输出如下:

test[0] 返回向量中的第一个项, x .

可以定义类的对象的加法和减法。 __add__() 和 __sub__() DunderMethod.这些方法将使您能够使用 + 和 - 执行这些操作的符号。如果没有这些Dud方法,则使用 + 和 - 提出 TypeError .

若要添加或减去两个向量,可以分别添加或减去向量的每个元素:

双管齐下 __add__() 和 __sub__() 返回另一个 Vector 对象,每个元素等于两个原始向量中相应元素的加减。输出如下:

对于乘法和除法,您也可以这样做,尽管在处理向量时,这些操作需要更多的注意。

在处理向量时,不能仅仅引用“乘法”,因为有不同类型的“乘法”。在这个项目中,你只需要标量乘法。标量乘法是指向量与标量相乘(标量有一个数量级,但没有方向)。但是,在本小节中,您还将定义点积两个向量。你想用 * 运算符,既适用于标量乘法,也适用于点积。因此,可以定义 __mul__() DunderMethod:

使用 * 运算符将取决于第二个操作数,即 * 符号,是标量或向量。如果由参数表示的第二个操作数 other ,是类型的 Vector ,计算了点积。但是,如果 other 是类型的 int 或 float ,返回的结果是一个新的 Vector ,按比例调整。

以上代码的输出如下:

如果您想要标量乘法,则需要标量乘法。 后 这个 * 象征。如果您试图运行该语句 3*Vector(3, 5, 9) 相反, TypeError 将被提高,因为 Vector 类不是用于使用的有效操作数。 * 带有类型的对象 int .

两个向量是分不开的。但是,可以将向量除以标量。您可以使用 / 运算符 Vector 如果定义 __truep__() DunderMethod:

产出如下:

如果你有一个向量(x,y,z),您可以找到它的震级使用表达式(x^2+y^2+z^2)。你也可以规范化向量。归一化给出一个方向相同但大小为 1 。您可以通过将向量的每个元素除以矢量的大小来计算归一化向量。

可以定义两个新方法来完成 Vector 班级:

测试代码提供了以下输出:

第三个输出给出了归一化向量的大小,表明它的大小是 1 .

根据使用的IDE或其他工具,在分割时可能会收到警告 self.x , self.y ,和 self.z ,如在 __truep__() 和 normalize() 。您不需要担心这个问题,但是如果您想要修复它,可以通过更改 __init__() 签署下列任何一项:

这两个选项都让IDE知道参数应该是浮动的。在第二个选项中,您使用类型暗示来实现。

您现在可以删除此脚本末尾的测试代码,以便您在 vectors.py 是类的定义。

现在,你可以开始研究Python中的3D太阳系了。您将创建两个主要类:

你将使用Matplotlib来创建和可视化太阳系。您可以在终端中使用以下内容来安装Matplotlib:

这个 Axes3D Matplotlib中的物体将“托管”太阳系。如果您使用过Matplotlib,并且主要使用了2D绘图,那么您将使用(有意或不知情的) Axes 对象。 Axes3D 的3D等效 Axes ,顾名思义!

现在是开始编写和测试这些类的时候了。您可以创建两个新文件:

接下来,您将开始处理 SolarSystem 班级。

您将在整个项目中使用任意单元。这意味着,与其用米作为距离,而用公斤作为质量,你将使用没有单位的数量。参数 size 用于定义包含太阳系的立方体的大小:

定义 SolarSystem 类的 __init__() 方法,其中包含参数。 size 。您还定义了 bodies 属性。这个属性是一个空列表,当你稍后创建它们时,它将包含太阳系内的所有天体。这个 add_body() 方法可以用来将轨道天体添加到太阳系中。

下一步是介绍Matplotlib。属性创建图形和一组轴。 subplots() 在 matplotlib.pyplot :

你打电话 plt.subplots() ,它返回一个图形和一组轴。返回的值分配给属性。 fig 和 ax 。你打电话 plt.subplots() 有以下论点:

您还可以调用该方法。 tight_layout() 。这是 Figure 类在Matplotlib中。此方法减少了图形边缘的边距。

到目前为止,您可以在控制台/REPL中尝试代码:

这给出了一组空的三维轴的图形:

您将使用 size 参数设置此多维数据集的大小。你会回到 SolarSystem 稍后上课。目前,您可以将您的注意力转向定义 SolarSystemBody 班级。

您可以开始创建 SolarSystemBody 类及其 __init__() 方法。我正在截断 SolarSystem 下面代码中的类定义用于显示。在此代码块和以后的代码块中,包含 # ... 指出您之前编写的未显示的代码:

中的参数。 __init__() 方法是:

你也叫 add_body() 方法中定义的 SolarSystem 类将这个天体添加到太阳系中。稍后,您将向 __init__() 方法。

中定义另一个方法。 SolarSystemBody 用其当前的位置和速度移动物体:

这个 move() 方法重新定义 position 属性的 velocity 属性。我们已经讨论过你是如何用任意单位来计算距离和质量的。你也在使用任意的时间单位。每个‘时间单位’将是循环的一个迭代,您将使用它来运行模拟。因此, move() 将身体按一次迭代所需的数量移动,这是一个时间单位。

你们已经创建了Matplotlib结构,它将容纳太阳系及其所有天体。现在,您可以添加一个 draw() 方法 SolarSystemBody 若要在Matplotlib图上显示主体,请执行以下操作。您可以通过绘制一个标记来完成这一任务。

在这样做之前,您需要在 SolarSystemBody 若要控制将绘制的标记的颜色和大小以表示身体,请执行以下操作:

类属性 min_display_size 和 display_log_base 设置参数,以确定您将在3D图上显示的标记的大小。您设置了一个最小的大小,以便您显示的标记不太小,即使对于小的身体也是如此。您将使用对数标度将质量转换为标记大小,并将此对数的基值设置为另一个类属性。

这个 display_size 属性中的实例属性。 __init__() 方法在计算的标记大小和所设置的最小标记大小之间进行选择。为了在这个项目中确定身体的显示大小,你要使用它的质量。

您还可以添加 colour 属性 __init__() ,暂时默认为黑色。

要测试这些新添加的内容,可以在控制台/REPL中尝试以下内容:

第一次呼叫 body.draw() 在原点绘制物体,因为你使用的是太阳系天体的默认位置。打电话给 body.move() 用一个“时间单位”所需的数量移动身体。因为身体的速度是 (1, 1, 1) ,身体将沿着三个轴中的每一个移动一个单位。第二次呼叫 body.draw() 在第二个位置画太阳系天体。请注意,当您这样做时,轴将自动重新排列。您很快就会在主代码中处理这个问题。

您可以返回到 SolarSystem 通过给太阳系及其天体添加两种新的方法,将其分类和连接起来: update_all() 和 draw_all() :

这个 update_all() 方法穿过太阳系中的每一个物体,移动并画出每一个物体。这个 draw_all() 方法使用太阳系的大小设置三轴的限制,并通过 pause() 功能。此方法还清除轴,为下一个绘图做好准备。

您可以开始构建一个简单的太阳系,并通过创建一个名为 simple_solar_system.py :

运行此脚本时,您将看到一个黑体从情节的中心移动:

您可以更改三维图形的透视图,这样您就可以直接沿着其中一个轴查看3D轴。可以通过将视图的方位和仰角设置为 0 在……里面 SolarSystem.__init__() :

跑动 simple_solar_system.py 现在给出以下观点:

这个 x -轴现在垂直于你的屏幕。因为你在2D显示器上显示一个3D视图,所以你总是有一个方向与你用来显示图形的2D平面垂直。这一限制使得很难区分物体何时沿该轴运动。你可以通过改变身体的速度 simple_solar_system.py 到 (1, 0, 0) 并再次运行脚本。身体似乎是静止的,因为它只是沿着轴移动,从你的屏幕出来!

您可以通过根据它的不同更改标记的大小来改进三维可视化。 x -协调。靠近您的对象看起来更大,而更远的对象看起来更小。您可以对 draw() 方法中的 SolarSystemBody 班级:

self.position[0] 表示身体的位置。 x -轴,即垂直于屏幕的轴。因子 30 除以是一个任意因素,您可以使用它来控制您希望这种效果有多强。

在本教程的后面,您还将添加另一个功能,将有助于可视化的三维运动的恒星和行星。

你有一个太阳系,里面有可以移动的物体。到目前为止,如果您只有一个身体,那么代码可以正常工作。但那不是一个非常有趣的太阳系!如果你有两个或两个以上的物体,它们就会通过相互的引力相互作用。

在这篇文章的开头,我简要回顾了你需要处理两个物体之间的引力的物理。由于在这个项目中使用的是任意单位,所以可以忽略引力常数 G 简单地计算出由于两个物体之间的重力而产生的力,如:

一旦你知道了两个物体之间的力,因为F=ma,您可以计算出每个对象必须使用的加速度:

一旦你知道加速度,你就可以改变物体的速度。

您可以添加两个新方法,一个在 SolarSystemBody 另一个在 SolarSystem ,计算出任何两个物体之间的力和加速度,并穿过太阳系中的所有物体,并计算它们之间的相互作用。

第一种方法计算出两个物体之间的引力,计算每个物体的加速度,并改变两个物体的速度。如果您愿意,可以将这些任务分为三种方法,但在本例中,我将将这些任务放在 SolarSystemBody :

accelerate_due_to_gravity() 对类型的对象调用。 SolarSystemBody 需要另一个 SolarSystemBody 身体作为一种争论。参数 self 和 other 代表两个身体相互作用。此方法的步骤如下:

现在你可以计算出任何两个天体之间的相互作用,你可以计算出太阳系中所有天体之间的相互作用。你可以把你的注意力转移到 SolarSystem 类的类:

这个 calculate_all_body_interactions() 方法贯穿太阳系的所有天体。每个天体与太阳系中的其他天体相互作用:

现在,您已经准备好创建一个简单的太阳系,并测试您到目前为止编写的代码。

在这个项目中,您将关注创建两种类型的天体之一:太阳和行星。您可以为这些机构创建两个类。新类继承自 SolarSystemBody :

这个 Sun 类的默认质量为10,000个单位,并将颜色设置为黄色。使用字符串 'yellow' ,这是Matplotlib中的有效颜色。

在 Planet 类创建一个 itertools.cycle 对象有三种颜色。在这种情况下,这三种颜色是红色、绿色和蓝色。你可以使用你想要的任何RGB颜色,也可以使用任意数量的颜色。在这个类中,使用带有RGB值的元组来定义颜色,而不是使用颜色名称的字符串。这也是在Matplotlib中定义颜色的有效方法。使用 next() 每当你创建一个新的行星时。

您还将默认质量设置为10个单元。

现在,你可以创建一个太阳系,其中一个太阳和两个行星在 simple_solar_system.py :

在这个脚本中,您创建了一个太阳和两个行星。你把太阳和行星分配给变量 sun 和 planets ,但这并不是严格要求的,因为 Sun 和 Planet 对象被创建,它们被添加到 solar_system 你不需要直接引用它们。

你用一个 while 循环来运行模拟。循环在每次迭代中执行三个操作。运行此脚本时,将获得以下动画:

它起作用了,算是吧。你可以看到太阳锚定在这个太阳系的中心,行星受到太阳引力的影响。除了行星在包含你电脑屏幕的平面上的运动(这些是 y -和 z --轴),你也可以看到行星越来越大,因为它们也在 x -轴,垂直于屏幕。

然而,你可能已经注意到行星的一些奇怪的行为。当它们被安排在太阳后面时,行星仍然被展示在太阳的前面。这不是数学上的问题--如果你跟踪行星的位置,你会发现 x -坐标显示,它们实际上是在太阳后面,正如你所预料的那样。

这个问题来自Matplotlib在绘图中绘制对象的方式。Matplotlib按绘制对象的顺序将对象按层绘制。因为你在行星之前创造了太阳, Sun 对象放在第一位 solar_system.bodies 并作为底层绘制。您可以通过在行星之后创建太阳来验证这一事实,在这种情况下,您将看到行星总是出现在太阳后面。

你会希望Matplotlib按照正确的顺序绘制太阳系的天体,从最前的那些天体开始。要实现这一点,您可以对 SolarSystem.bodies 的值为基础的列表。 x -协调每次刷新3D图形的时间。下面是如何在 update_all() 方法 SolarSystem :

使用List方法 sort 带着 key 参数来定义要用于排序列表的规则。这个 lambda 函数设置此规则。在本例中,您使用的值是 position[0] 表示 x -协调。因此,每次你打电话 update_all() 在模拟中 while 循环中,根据其沿 x -轴心。

运行 simple_solar_system.py 现在的脚本如下:

现在,你可以想象行星的轨道,就像它们围绕太阳运行一样。不断变化的大小显示了它们的 x -位置,当行星在太阳后面时,它们被隐藏在视线之外!

最后,你也可以移除轴线和网格,这样你在模拟中看到的就是太阳和行星。可以通过添加对Matplotlib的调用来做到这一点。 axis() 方法 SolarSystem.draw_all() :

模拟现在看起来是这样的:

使用Matplotlib对Python中的一个三维太阳系进行的模拟现在已经完成。在下一节中,您将添加一个功能,允许您查看 XY -模拟底部的飞机。这有助于可视化太阳系中物体的三维动力学。

在Python的三维太阳系模拟中,为了帮助可视化身体的运动,您可以在动画的“地板”上添加一个2D投影。这个2D投影将显示物体在 XY -飞机。要实现这一点,您需要将另一个绘图添加到显示动画的相同轴上,并且只需在 x -和 y -坐标。你可以锚定 z -与图形底部协调,使2D投影显示在动画的地板上。

您可以首先将一个新参数添加到 __init__() 方法的 SolarSystem 班级:

新参数 projection_2d ,默认为 False ,将允许您在两个可视化选项之间切换。如果 projection_2d 是 False 动画将只显示身体在3D中移动,没有轴和网格,就像你最后看到的结果一样。

让我们开始做一些改变 projection_2d 是 True :

您所做的更改如下:

您还需要在 simple_solar_system.py 打开2D投影:

模拟现在看起来如下:

的二维投影 XY -平面使它更容易跟随轨道物体的路径。

我们将用Python完成另一个三维太阳系的模拟。您将使用已经定义的类来模拟双星系统。创建一个名为 binary_star_system.py 创造两个太阳和两个行星: