您的位置:

mysql库批量插入20万数据提高速度,如何向mysql批量导入1000万条数据

本文目录一览:

有20万条数据,使用mysql数据库,insert与update哪个速度快;

insert会更快一点,可以使用 INSERT INTO target_table SELECT columns FROM source_table 高效地将大量行从一个表(例如临时表)。

传输到按最小方式记录日志的其他表中。按最小方式记录日志可以提高语句的性能,减少在事务期间此操作填充可用事务日志空间的可能性。INSERT INTO 语句用于向表格中插入新的行。

INSERT INTO 表名称 VALUES (值1, 值2,....)INSERT INTO Persons (LastName, Address) VALUES ('Wilson', 'Champs-Elysees')。

Update是一个数据库SQL语法用语,用途是更新表中原有数据,单独使用时使用where匹配字段。Update 语句用于修改表中的数据。UPDATE 表名称 SET 列名称 = 新值 WHERE 列名称 = 某值。

扩展资料:

UPDATE的用法:

更新某一行中的一个列。

我们为 lastname 是 quot;Wilsonquot; 的人添加 firstname:

UPDATE Person SET FirstName = 'Fred' WHERE LastName = 'Wilson' 。

更新某一行中的若干列。

我们会修改地址(address),并添加城市名称(city):

UPDATE Person SET Address = 'Zhongshan 23', City = 'Nanjing'WHERE LastName = 'Wilson'。

参考资料来源:百度百科-SQL INSERT INTO

参考资料来源:百度百科-update

mysql 如何提高批量导入的速度

这个是需要做一些设置的。主要设置 rewriteBatchedStatements参数。原理如下:

MySQL Jdbc驱动在默认情况下会无视executeBatch()语句,把我们期望批量执行的一组sql语句拆散,一条一条地发给MySQL数据库,直接造成较低的性能。

只有把rewriteBatchedStatements参数置为true, 驱动才会帮你批量执行SQL (jdbc:mysql://ip:port/db?rewriteBatchedStatements=true)。不过,驱动具体是怎么样批量执行的? 你是不是需要看一下内幕,才敢放心地使用这个选项? 下文会给出答案。

另外,有人说rewriteBatchedStatements只对INSERT有效,有人说它对UPDATE/DELETE也有效。为此我做了一些实验(详见下文),结论是: 这个选项对INSERT/UPDATE/DELETE都有效,只不过对INSERT它为会预先重排一下SQL语句。

注:本文使用的mysql驱动版本是5.1.12

实验记录:未打开rewriteBatchedStatements时

未打开rewriteBatchedStatements时,根据wireshark嗅探出的mysql报文可以看出,

batchDelete(10条记录) = 发送10次delete 请求

batchUpdate(10条记录) = 发送10次update 请求

batchInsert(10条记录) = 发送10次insert 请求

也就是说,batchXXX()的确不起作用

实验记录:打开了rewriteBatchedStatements后

打开rewriteBatchedStatements后,根据wireshark嗅探出的mysql报文可以看出

batchDelete(10条记录) = 发送一次请求,内容为”delete from t where id = 1; delete from t where id = 2; delete from t where id = 3; ….”

batchUpdate(10条记录) = 发送一次请求,内容为”update t set … where id = 1; update t set … where id = 2; update t set … where id = 3 …”

batchInsert(10条记录) = 发送一次请求,内容为”insert into t (…) values (…) , (…), (…)”

对delete和update,驱动所做的事就是把多条sql语句累积起来再一次性发出去;而对于insert,驱动则会把多条sql语句重写成一条风格很酷的sql语句,然后再发出去。 官方文档说,这种insert写法可以提高性能(”This is considerably faster (many times faster in some cases) than using separate single-row INSERT statements”)

一个注意事项

需要注意的是,即使rewriteBatchedStatements=true, batchDelete()和batchUpdate()也不一定会走批量: 当batchSize = 3时,驱动会宁愿一条一条地执行SQL。所以,如果你想验证rewriteBatchedStatements在你的系统里是否已经生效,记得要使用较大的batch.

更多细节看这个帖子:

blog.yemou.net/article/query/info/tytfjhfascvhzxcyt397

如何提升MySQL批量插入的效率

需要将大量数据(大概5W条)插入MySQL数

据库,用普通的SQL

Statement执行,时间大概是几分钟。于是想到用PreparedStatement,但是改了之后发现效率并没有很大的提升。不成,想到了

load data local

infile...命令,以前一直认为这条命令仅限MySQL终端上使用而不是标准的SQL语句,今天看了几篇文章之后有了很大的收获。

1. 使用PreparedStatement batch operation

以前使用PreparedStatement性能没有很大提升的原因在于:

没有使用批处理方法

在语句执行之前应关闭事务自动提交,语句执行完之后再提交

public

void batchLoad(Connection connection)

{

try

{

connection.setAutoCommit(false);

BufferedReader reader =

new BufferedReader(new

FileReader("tfacts_result"));

String sqlString =

"insert into test(node1, node2, weight) values(?, ?, ?)";

PreparedStatement pstmt = connection.prepareStatement(sqlString);

String line =

null;

while(true)

{

line = reader.readLine();

if(line == null)

{

break;

}

String[] columns = line.split("\t");

for(int

i = 1; i = columns.length; i++)

{

pstmt.setString(i, columns[i-1]);

}

pstmt.addBatch();

}

pstmt.executeBatch();

connection.commit();

pstmt.close();

reader.close();

}

catch (FileNotFoundException e) {

e.printStackTrace();

}catch

(SQLException e){

e.printStackTrace();

}catch

(IOException e){

e.printStackTrace();

}

2.使用load data local infile into tabel XXX(注意在文件中用\t将每列数据隔开)

public

void loadData(Connection connection)

{

long

starTime = System.currentTimeMillis();

String sqlString =

"load data local infile ? into table test";

PreparedStatement pstmt;

try

{

pstmt = connection.prepareStatement(sqlString);

pstmt.setString(1,

"tfacts_result");

pstmt.executeUpdate();

pstmt.close();

}

catch (SQLException e) {

e.printStackTrace();

}

long

endTime = System.currentTimeMillis();

System.out.println("program runs "

+ (endTime - starTime) + "ms");

}

测试了5W条数据,PreparedStatement耗时10s,而load data infile耗时3s。

mysql 一次插入几万条数据应该怎么做优化

关于mysql处理百万级以上的数据时如何提高其查询速度的方法

最近一段时间由于工作需要,开始关注针对Mysql数据库的select查询语句的相关优化方法。

由于在参与的实际项目中发现当mysql表的数据量达到百万级时,普通SQL查询效率呈直线下降,而且如果where中的查询条件较多时,其查询速度简直无法容忍。曾经测试对一个包含400多万条记录(有索引)的表执行一条条件查询,其查询时间竟然高达40几秒,相信这么高的查询延时,任何用户都会抓狂。因此如何提高sql语句查询效率,显得十分重要。以下是网上流传比较广泛的30种SQL查询语句优化方法:

1、应尽量避免在 where 子句中使用!=或操作符,否则将引擎放弃使用索引而进行全表扫描。

2、对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

3、应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null

可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

select id from t where num=0

4、尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num=10 or num=20

可以这样查询:

select id from t where num=10

union all

select id from t where num=20

5、下面的查询也将导致全表扫描:(不能前置百分号)

select id from t where name like ‘%c%’

若要提高效率,可以考虑全文检索。

6、in 和 not in 也要慎用,否则会导致全表扫描,如:

select id from t where num in(1,2,3)

对于连续的数值,能用 between 就不要用 in 了:

select id from t where num between 1 and 3

7、如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

select id from t where num=@num

可以改为强制查询使用索引:

select id from t with(index(索引名)) where num=@num

8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where num/2=100

应改为:

select id from t where num=100*2

9、应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where substring(name,1,3)=’abc’–name以abc开头的id

select id from t where datediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id

应改为:

select id from t where name like ‘abc%’

select id from t where createdate=’2005-11-30′ and createdate’2005-12-1′

10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11、在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使 用,并且应尽可能的让字段顺序与索引顺序相一致。

12、不要写一些没有意义的查询,如需要生成一个空表结构:

select col1,col2 into #t from t where 1=0

这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:

create table #t(…)

13、很多时候用 exists 代替 in 是一个好的选择:

select num from a where num in(select num from b)

用下面的语句替换:

select num from a where exists(select 1 from b where num=a.num)

14、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段 sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

15、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。

16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

17、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

18、尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

19、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

20、尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21、避免频繁创建和删除临时表,以减少系统表资源的消耗。

22、临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使 用导出表。

23、在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24、如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25、尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26、使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27、与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28、在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

29、尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

30、尽量避免大事务操作,提高系统并发能力。