您的位置:

GANPytorch: 深入理解生成对抗网络

一、概述

生成对抗网络(GAN)被广泛应用于图像和语音处理等众多领域,同时也是计算机科学领域中备受关注的课题之一。GANPytorch是一个基于Pytorch框架的GAN工具库,它提供了一种简便的方式让开发者们能够更快地使用GAN模型,以训练和生成高质量的图像和语音。GANPytorch的核心思想就是利用卷积神经网络(CNN)来对真实图像进行建模,而用另一个神经网络来生成类似真实图像的样本。

二、GANPytorch架构

GANPytorch包含两个主要的组件:生成器(generator)和判别器(discriminator)。生成器使用前馈神经网络(feed-forward neural network)来生成样本,而判别器则使用基于CNN的神经网络来判定一个输入样本是否足够真实。两个组件是互相竞争的,也就是说,只有当生成器成功愚弄了判别器并生成了足够真实的样本时,才算是训练成功。GANPytorch的代码框架如下所示:


class discriminator(nn.Module):
    def __init__(self, img_shape):
        super(discriminator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid(),
        )

    def forward(self, img):
        img_flat = img.view(img.size(0), -1)
        validity = self.model(img_flat)
        return validity


class generator(nn.Module):
    def __init__(self, latent_dim, img_shape):
        super(generator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(latent_dim, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.BatchNorm1d(256, momentum=0.8),
            nn.Linear(256, 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.BatchNorm1d(512, momentum=0.8),
            nn.Linear(512, 1024),
            nn.LeakyReLU(0.2, inplace=True),
            nn.BatchNorm1d(1024, momentum=0.8),
            nn.Linear(1024, int(np.prod(img_shape))),
            nn.Tanh(),
        )
        self.img_shape = img_shape

    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), *self.img_shape)
        return img

三、GANPytorch应用

1、图像生成

图像生成是GANPytorch最常见的应用之一。一个典型的例子是,给定一组文本描述,GANPytorch可以生成与之相符的图片。GANPytorch中的生成器网络可以根据外部输入生成一系列表示该输入的图像。


#初始化生成器和判别器
generator = Generator(latent_dim=100)
discriminator = Discriminator()

#定义损失函数和优化器
adversarial_loss = torch.nn.BCELoss()
optimizer_G = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))

#开始训练GAN模型
for epoch in range(n_epochs):
    for i, (imgs, _) in enumerate(dataloader):
        #训练判别器
        optimizer_D.zero_grad()
        real_imgs = Variable(imgs.type(Tensor))
        validity_real = discriminator(real_imgs)
        loss_D_real = adversarial_loss(validity_real, valid)
        fake_imgs = generator(z)
        validity_fake = discriminator(fake_imgs.detach())
        loss_D_fake = adversarial_loss(validity_fake, fake)
        loss_D = (loss_D_real + loss_D_fake) / 2
        loss_D.backward()
        optimizer_D.step()
        
        #训练生成器
        optimizer_G.zero_grad()
        validity = discriminator(fake_imgs)
        loss_G = adversarial_loss(validity, valid)
        loss_G.backward()
        optimizer_G.step()

2、图像迁移

GANPytorch也可以被用于图像迁移。应用该方法可以将一个图像A中的某些要素,如面部表情、发型等,迁移到另一张图像B上。在训练过程中,判别器网络不仅需要鉴别图像是真实的还是生成的,还需要鉴别输入图像属于哪个类别。


#初始化GAN模型,并定义损失函数和优化器
generator = Generator()
discriminator = Discriminator()
adversarial_loss = torch.nn.MSELoss()
class_loss = torch.nn.CrossEntropyLoss()
gen_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.99))
dis_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.99))

#开始训练GAN模型
for epoch in range(n_epochs):
    for i, (real_imgs, labels) in enumerate(dataloader):
        labels = labels.type(torch.LongTensor)
        real_labels = Variable(labels.cuda())
        valid = Variable(Tensor(real_imgs.size(0), 1).fill_(1.0), requires_grad=False)
        fake = Variable(Tensor(real_imgs.size(0), 1).fill_(0.0), requires_grad=False)

        # Generate a batch of images
        z = Variable(Tensor(np.random.normal(0, 1, (real_imgs.shape[0], latent_dim))))
        gen_imgs = generator(z)

        #--------------------
        # Train Discriminator
        #--------------------

        dis_optimizer.zero_grad()

        # Loss for real images
        real_validity, real_classes = discriminator(real_imgs)
        d_real_loss = (adversarial_loss(real_validity, valid) + class_loss(real_classes, real_labels)) / 2

        # Loss for fake images
        fake_validity, fake_classes = discriminator(gen_imgs.detach())
        d_fake_loss = (adversarial_loss(fake_validity, fake) + class_loss(fake_classes, real_labels)) / 2

        # Total discriminator loss
        d_loss = d_real_loss + d_fake_loss

        d_loss.backward()
        dis_optimizer.step()

        #--------------------
        # Train Generator
        #--------------------

        gen_optimizer.zero_grad()

        # Loss measures generator's ability to fool the discriminator
        validity, pred_classes = discriminator(gen_imgs)
        g_loss = (adversarial_loss(validity, valid) + class_loss(pred_classes, real_labels)) / 2

        g_loss.backward()
        gen_optimizer.step()

3、声音处理

GANPytorch不仅可以处理图像,还可以处理声音。GANPytorch可以被用于音乐合成、语音识别等领域。


#初始化GAN模型,并定义损失函数和优化器
generator = Generator()
discriminator = Discriminator()
adversarial_loss = torch.nn.MSELoss()
gen_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.99))
dis_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.99))

#开始训练GAN模型
for epoch in range(n_epochs):
    for i, (real_audio, _) in enumerate(dataloader):
        real_audio = real_audio.type(Tensor)
        valid = Variable(Tensor(real_audio.size(0), 1).fill_(1.0), requires_grad=False)
        fake = Variable(Tensor(real_audio.size(0), 1).fill_(0.0), requires_grad=False)

        # Generate a batch of audios
        z = Variable(Tensor(np.random.normal(0, 1, (real_audio.shape[0], latent_dim))))
        gen_audio = generator(z)

        #--------------------
        # Train Discriminator
        #--------------------

        dis_optimizer.zero_grad()

        # Loss for real audios
        real_validity = discriminator(real_audio)
        d_real_loss = adversarial_loss(real_validity, valid)

        # Loss for fake audios
        fake_validity = discriminator(gen_audio.detach())
        d_fake_loss = adversarial_loss(fake_validity, fake)

        # Total discriminator loss
        d_loss = d_real_loss + d_fake_loss

        d_loss.backward()
        dis_optimizer.step()

        #--------------------
        # Train Generator
        #--------------------

        gen_optimizer.zero_grad()

        # Loss measures generator's ability to fool the discriminator
        validity = discriminator(gen_audio)
        g_loss = adversarial_loss(validity, valid)

        g_loss.backward()
        gen_optimizer.step()