一、概述
生成对抗网络(GAN)被广泛应用于图像和语音处理等众多领域,同时也是计算机科学领域中备受关注的课题之一。GANPytorch是一个基于Pytorch框架的GAN工具库,它提供了一种简便的方式让开发者们能够更快地使用GAN模型,以训练和生成高质量的图像和语音。GANPytorch的核心思想就是利用卷积神经网络(CNN)来对真实图像进行建模,而用另一个神经网络来生成类似真实图像的样本。
二、GANPytorch架构
GANPytorch包含两个主要的组件:生成器(generator)和判别器(discriminator)。生成器使用前馈神经网络(feed-forward neural network)来生成样本,而判别器则使用基于CNN的神经网络来判定一个输入样本是否足够真实。两个组件是互相竞争的,也就是说,只有当生成器成功愚弄了判别器并生成了足够真实的样本时,才算是训练成功。GANPytorch的代码框架如下所示:
class discriminator(nn.Module):
def __init__(self, img_shape):
super(discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
class generator(nn.Module):
def __init__(self, latent_dim, img_shape):
super(generator, self).__init__()
self.model = nn.Sequential(
nn.Linear(latent_dim, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm1d(256, momentum=0.8),
nn.Linear(256, 512),
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm1d(512, momentum=0.8),
nn.Linear(512, 1024),
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm1d(1024, momentum=0.8),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh(),
)
self.img_shape = img_shape
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), *self.img_shape)
return img
三、GANPytorch应用
1、图像生成
图像生成是GANPytorch最常见的应用之一。一个典型的例子是,给定一组文本描述,GANPytorch可以生成与之相符的图片。GANPytorch中的生成器网络可以根据外部输入生成一系列表示该输入的图像。
#初始化生成器和判别器
generator = Generator(latent_dim=100)
discriminator = Discriminator()
#定义损失函数和优化器
adversarial_loss = torch.nn.BCELoss()
optimizer_G = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
#开始训练GAN模型
for epoch in range(n_epochs):
for i, (imgs, _) in enumerate(dataloader):
#训练判别器
optimizer_D.zero_grad()
real_imgs = Variable(imgs.type(Tensor))
validity_real = discriminator(real_imgs)
loss_D_real = adversarial_loss(validity_real, valid)
fake_imgs = generator(z)
validity_fake = discriminator(fake_imgs.detach())
loss_D_fake = adversarial_loss(validity_fake, fake)
loss_D = (loss_D_real + loss_D_fake) / 2
loss_D.backward()
optimizer_D.step()
#训练生成器
optimizer_G.zero_grad()
validity = discriminator(fake_imgs)
loss_G = adversarial_loss(validity, valid)
loss_G.backward()
optimizer_G.step()
2、图像迁移
GANPytorch也可以被用于图像迁移。应用该方法可以将一个图像A中的某些要素,如面部表情、发型等,迁移到另一张图像B上。在训练过程中,判别器网络不仅需要鉴别图像是真实的还是生成的,还需要鉴别输入图像属于哪个类别。
#初始化GAN模型,并定义损失函数和优化器
generator = Generator()
discriminator = Discriminator()
adversarial_loss = torch.nn.MSELoss()
class_loss = torch.nn.CrossEntropyLoss()
gen_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.99))
dis_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.99))
#开始训练GAN模型
for epoch in range(n_epochs):
for i, (real_imgs, labels) in enumerate(dataloader):
labels = labels.type(torch.LongTensor)
real_labels = Variable(labels.cuda())
valid = Variable(Tensor(real_imgs.size(0), 1).fill_(1.0), requires_grad=False)
fake = Variable(Tensor(real_imgs.size(0), 1).fill_(0.0), requires_grad=False)
# Generate a batch of images
z = Variable(Tensor(np.random.normal(0, 1, (real_imgs.shape[0], latent_dim))))
gen_imgs = generator(z)
#--------------------
# Train Discriminator
#--------------------
dis_optimizer.zero_grad()
# Loss for real images
real_validity, real_classes = discriminator(real_imgs)
d_real_loss = (adversarial_loss(real_validity, valid) + class_loss(real_classes, real_labels)) / 2
# Loss for fake images
fake_validity, fake_classes = discriminator(gen_imgs.detach())
d_fake_loss = (adversarial_loss(fake_validity, fake) + class_loss(fake_classes, real_labels)) / 2
# Total discriminator loss
d_loss = d_real_loss + d_fake_loss
d_loss.backward()
dis_optimizer.step()
#--------------------
# Train Generator
#--------------------
gen_optimizer.zero_grad()
# Loss measures generator's ability to fool the discriminator
validity, pred_classes = discriminator(gen_imgs)
g_loss = (adversarial_loss(validity, valid) + class_loss(pred_classes, real_labels)) / 2
g_loss.backward()
gen_optimizer.step()
3、声音处理
GANPytorch不仅可以处理图像,还可以处理声音。GANPytorch可以被用于音乐合成、语音识别等领域。
#初始化GAN模型,并定义损失函数和优化器
generator = Generator()
discriminator = Discriminator()
adversarial_loss = torch.nn.MSELoss()
gen_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.99))
dis_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.99))
#开始训练GAN模型
for epoch in range(n_epochs):
for i, (real_audio, _) in enumerate(dataloader):
real_audio = real_audio.type(Tensor)
valid = Variable(Tensor(real_audio.size(0), 1).fill_(1.0), requires_grad=False)
fake = Variable(Tensor(real_audio.size(0), 1).fill_(0.0), requires_grad=False)
# Generate a batch of audios
z = Variable(Tensor(np.random.normal(0, 1, (real_audio.shape[0], latent_dim))))
gen_audio = generator(z)
#--------------------
# Train Discriminator
#--------------------
dis_optimizer.zero_grad()
# Loss for real audios
real_validity = discriminator(real_audio)
d_real_loss = adversarial_loss(real_validity, valid)
# Loss for fake audios
fake_validity = discriminator(gen_audio.detach())
d_fake_loss = adversarial_loss(fake_validity, fake)
# Total discriminator loss
d_loss = d_real_loss + d_fake_loss
d_loss.backward()
dis_optimizer.step()
#--------------------
# Train Generator
#--------------------
gen_optimizer.zero_grad()
# Loss measures generator's ability to fool the discriminator
validity = discriminator(gen_audio)
g_loss = adversarial_loss(validity, valid)
g_loss.backward()
gen_optimizer.step()