本文目录一览:
- 1、如何用Java实现树形结构啊?
- 2、用Java实现一个树形结构,并对其进行遍历
- 3、数据结构 java开发中常用的排序算法有哪些
- 4、java实现对树形结构(文件夹式)数据数组进行排序
- 5、java数据保存类似树形的数据结构
如何用Java实现树形结构啊?
package tree;
import java.util.LinkedList;
import java.util.List;
/**
* 功能:把一个数组的值存入二叉树中,然后进行3种方式的遍历
*
* 参考资料0:数据结构(C语言版)严蔚敏
*
* 参考资料1:
*
* 参考资料2:
*
* @author ocaicai@yeah.net @date: 2011-5-17
*
*/
public class BinTreeTraverse2 {
private int[] array = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private static ListNode nodeList = null;
/**
* 内部类:节点
*
* @author ocaicai@yeah.net @date: 2011-5-17
*
*/
private static class Node {
Node leftChild;
Node rightChild;
int data;
Node(int newData) {
leftChild = null;
rightChild = null;
data = newData;
}
}
public void createBinTree() {
nodeList = new LinkedListNode();
// 将一个数组的值依次转换为Node节点
for (int nodeIndex = 0; nodeIndex array.length; nodeIndex++) {
nodeList.add(new Node(array[nodeIndex]));
}
// 对前lastParentIndex-1个父节点按照父节点与孩子节点的数字关系建立二叉树
for (int parentIndex = 0; parentIndex array.length / 2 - 1; parentIndex++) {
// 左孩子
nodeList.get(parentIndex).leftChild = nodeList
.get(parentIndex * 2 + 1);
// 右孩子
nodeList.get(parentIndex).rightChild = nodeList
.get(parentIndex * 2 + 2);
}
// 最后一个父节点:因为最后一个父节点可能没有右孩子,所以单独拿出来处理
int lastParentIndex = array.length / 2 - 1;
// 左孩子
nodeList.get(lastParentIndex).leftChild = nodeList
.get(lastParentIndex * 2 + 1);
// 右孩子,如果数组的长度为奇数才建立右孩子
if (array.length % 2 == 1) {
nodeList.get(lastParentIndex).rightChild = nodeList
.get(lastParentIndex * 2 + 2);
}
}
/**
* 先序遍历
*
* 这三种不同的遍历结构都是一样的,只是先后顺序不一样而已
*
* @param node
* 遍历的节点
*/
public static void preOrderTraverse(Node node) {
if (node == null)
return;
System.out.print(node.data + " ");
preOrderTraverse(node.leftChild);
preOrderTraverse(node.rightChild);
}
/**
* 中序遍历
*
* 这三种不同的遍历结构都是一样的,只是先后顺序不一样而已
*
* @param node
* 遍历的节点
*/
public static void inOrderTraverse(Node node) {
if (node == null)
return;
inOrderTraverse(node.leftChild);
System.out.print(node.data + " ");
inOrderTraverse(node.rightChild);
}
/**
* 后序遍历
*
* 这三种不同的遍历结构都是一样的,只是先后顺序不一样而已
*
* @param node
* 遍历的节点
*/
public static void postOrderTraverse(Node node) {
if (node == null)
return;
postOrderTraverse(node.leftChild);
postOrderTraverse(node.rightChild);
System.out.print(node.data + " ");
}
public static void main(String[] args) {
BinTreeTraverse2 binTree = new BinTreeTraverse2();
binTree.createBinTree();
// nodeList中第0个索引处的值即为根节点
Node root = nodeList.get(0);
System.out.println("先序遍历:");
preOrderTraverse(root);
System.out.println();
System.out.println("中序遍历:");
inOrderTraverse(root);
System.out.println();
System.out.println("后序遍历:");
postOrderTraverse(root);
}
}
用Java实现一个树形结构,并对其进行遍历
import java.util.Iterator;
import java.util.Random;
import java.util.TreeSet;
public class Demo{
public static void main(String[] args) throws Exception {
TreeSetInteger ts = new TreeSetInteger();
for(int i = 0; i 10; i++){
ts.add(new Random().nextInt(999));
}
for(IteratorInteger it = ts.iterator(); it.hasNext();){
System.out.println(it.next());
}
}
}
//上面是利用TreeSet进行简单的二叉树实现,另有遍历,当然遍历是自然顺序。
//如有需要请自行修改吧。
数据结构 java开发中常用的排序算法有哪些
排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准:
(1)执行时间
(2)存储空间
(3)编程工作
对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。
主要排序法有:
一、冒泡(Bubble)排序——相邻交换
二、选择排序——每次最小/大排在相应的位置
三、插入排序——将下一个插入已排好的序列中
四、壳(Shell)排序——缩小增量
五、归并排序
六、快速排序
七、堆排序
八、拓扑排序
一、冒泡(Bubble)排序
----------------------------------Code 从小到大排序n个数------------------------------------
void BubbleSortArray()
{
for(int i=1;in;i++)
{
for(int j=0;in-i;j++)
{
if(a[j]a[j+1])//比较交换相邻元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),适用于排序小列表。
二、选择排序
----------------------------------Code 从小到大排序n个数--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;in-1;i++)
{
min_index=i;
for(int j=i+1;jn;j++)//每次扫描选择最小项
if(arr[j]arr[min_index]) min_index=j;
if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),适用于排序小的列表。
三、插入排序
--------------------------------------------Code 从小到大排序n个数-------------------------------------
void InsertSortArray()
{
for(int i=1;in;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分
{
int temp=arr[i];//temp标记为未排序第一个元素
int j=i-1;
while (j=0 arr[j]temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)与冒泡、选择相同,适用于排序小列表
若列表基本有序,则插入排序比冒泡、选择更有效率。
四、壳(Shell)排序——缩小增量排序
-------------------------------------Code 从小到大排序n个数-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr0;incr--)//增量递减,以增量3,2,1为例
{
for(int L=0;L(n-1)/incr;L++)//重复分成的每个子列表
{
for(int i=L+incr;in;i+=incr)//对每个子列表应用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j=0arr[j]temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
适用于排序小列表。
效率估计O(nlog2^n)~O(n^1.5),取决于增量值的最初大小。建议使用质数作为增量值,因为如果增量值是2的幂,则在下一个通道中会再次比较相同的元素。
壳(Shell)排序改进了插入排序,减少了比较的次数。是不稳定的排序,因为排序过程中元素可能会前后跳跃。
五、归并排序
----------------------------------------------Code 从小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low=high) return;//每个子列表中剩下一个元素时停止
else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/
MergeSort(low,mid);//子列表进一步划分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素
for(int i=low,j=mid+1,k=low;i=mid j=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/
{
if (arr[i]=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表
B[k]=arr[j];
for( ;i=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中
B[k]=arr[i];
for(int z=0;zhigh-low+1;z++)//将排序的数组B的 所有元素复制到原始数组arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),归并的最佳、平均和最糟用例效率之间没有差异。
适用于排序大列表,基于分治法。
六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素
while (low high)
{
//从后往前栽后半部分中寻找第一个小于枢纽元素的元素
while (low high arr[high] = pivot)
{
--high;
}
//将这个比枢纽元素小的元素交换到前半部分
swap(arr[low], arr[high]);
//从前往后在前半部分中寻找第一个大于枢纽元素的元素
while (low high arr [low ]=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分
}
return low ;//返回枢纽元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),适用于排序大列表。
此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。若数基本有序,效率反而最差。选项中间值作为枢纽,效率是O(nlogn)。
基于分治法。
七、堆排序
最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。
思想:
(1)令i=l,并令temp= kl ;
(2)计算i的左孩子j=2i+1;
(3)若j=n-1,则转(4),否则转(6);
(4)比较kj和kj+1,若kj+1kj,则令j=j+1,否则j不变;
(5)比较temp和kj,若kjtemp,则令ki等于kj,并令i=j,j=2i+1,并转(3),否则转(6)
(6)令ki等于temp,结束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)
{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元 int I; BuildHeap(R); //将R[1-n]建成初始堆for(i=n;i1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //将堆顶和堆中最后一个记录交换 Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质 } } ---------------------------------------Code--------------------------------------
堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。 由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。 堆排序是就地排序,辅助空间为O(1), 它是不稳定的排序方法。
堆排序与直接插入排序的区别:
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。
八、拓扑排序
例 :学生选修课排课先后顺序
拓扑排序:把有向图中各顶点按照它们相互之间的优先关系排列成一个线性序列的过程。
方法:
在有向图中选一个没有前驱的顶点且输出
从图中删除该顶点和所有以它为尾的弧
重复上述两步,直至全部顶点均已输出(拓扑排序成功),或者当图中不存在无前驱的顶点(图中有回路)为止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*输出拓扑排序函数。若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//对各顶点求入度indegree[0....num]
InitStack(thestack);//初始化栈
for(i=0;iG.num;i++)
Console.WriteLine("结点"+G.vertices[i].data+"的入度为"+indegree[i]);
for(i=0;iG.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓扑排序输出顺序为:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("发生错误,程序结束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (countG.num)
Cosole.WriteLine("该图有环,出现错误,无法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
算法的时间复杂度O(n+e)。
java实现对树形结构(文件夹式)数据数组进行排序
这个问题本质上就是个数据结构的问题,所谓排序和查找效率依赖的是算法和数据结构的配合,你现在定下了链表(没有具体说明的话,这里应该指的是单向链表吧)、数组和二叉树,这几个之中,那排序和查找的数据就看用什么算法和相应的数据结构配合了~~~
排序算法中,快速排序是最快的,比较适合用链表来处理,但是链表的查找是比较慢的(双向链表的话可以加快查找速度)。
数组排序会比较慢,不是算法的问题,而是数组的调整因为需要位移,但是数组一旦排号顺序后,查找是很快的——折半查找。
二叉数较为平局,排序可以采用堆排序,查找可以建二叉排序树来找(用B+或B-树的话可以更快)。
个人看法,不一定对,欢迎拍砖,具体代码知道算法了就自己上网找吧。
java数据保存类似树形的数据结构
其实有两种方式:
第一种就是递归 就像现在比较老的树形菜单。这种方式应该string类型应该是存不了的。就是自定义一个类型A 里面有一个成员变量 listA。 这种结构就是list里面嵌套list,你有多少级就有多少层。
第二种其实要做处理,就是把原数据按一定规则排序放到一个list里面,这里面不会再嵌套list。list排完序就如你的效果图一样。第一个 一级节点 》》其子节点;然后第二个一级节点》》其子节点,etc。 但是这种结构要有存的时候要循环一遍排成上述的顺序,取的时候还需要判断哪个是下一个不同级节点的开始。
js前台展示比较简单,根据父id直接添加就行了,原数据什么都不用做。但是java里这种方式不行。