您的位置:

python两个表格数据相减,python列表能相减吗

本文目录一览:

怎样把两个单元格中的数据相减?

相减的函数操作步骤如下:

1、左键点"L4”单元格。你自己的表格的话,就按自己表格的要求,点在相应的单元格。

2、方法1:在编辑栏的文本框中输入“=H4-J4”

方法2:在"L4“单元格文本框中输入“=H4-J4”

3、方法1:左键点红色矩形区域

方法2:按下键盘上的:Enter键

方法3:左键点编辑区单元格

拓展资料:

注意别忘了先输入”=“号,刚才我在编写的时候就忘了写”=“号

输入单元格不一定要文字输入,可以写了”=“号后,用鼠标左键单击一下即可自动输入

Python 两组数据相减

你这个是键值对吗,还是元组之类的,元组的话可以用循环下标控制,字典的话加个id

python类中两个列表实例如何相加或相减

import numpy

a = [1, 2, 3, 4]

b = [5, 6, 7, 8]

a_array = numpy.array(a)

b_array = numpy.array(b)

c_array = a_array + b_array

d_array = a_array - b_array

print c_array

print d_array

扩展资料:  

算术运算结果的数字类型与运算数的类型有关。进行除法(/)运算时,不管商为整数还是浮点数,运算结果始终为浮点数。要得到整型的商,需要用双斜杠(//)做整除,且除数必须是整型的。对于其他的运算,只要任一运算数为浮点数,运算结果就是浮点数。Python算术运算的基础使用方法如下所示。

num_int = 4  

num_float = 4.0

print('整数与浮点数的和为:', num_int + num_float)   

#Out[1]: 整数与浮点数的和为:8.0   

print('整数与浮点数的差为:', num_int - num_float)

#Out[2]: 整数与浮点数的差为: 0.0   

print('整数与浮点数的积为:', num_int * num_float)

#Out[3]: 整数与浮点数的积为:16.0   

print('浮点数与整数的商为:', num_float / num_int)

#Out[4]: 浮点数与整数的商为:1.0   

print('浮点数对整数取模结果为:', num_float % num_int)

#Out[5]: 浮点数对整数取模结果为: 0.0 

print('浮点数的整数次幂为:', num_float ** num_int)

#Out[6]: 浮点数的整数次幂为:256.0

python中的list如何进行相减操作或者将list分片

基于文本文档(Markdown) 设想好需要的基本需要的表、字段、类型;

使用 Rails Migration 随着功能的开发逐步创建表;

随着细节功能的开发、需求,逐步增加字段,删除字段,或者调整字段类型;

第一个 Release 的时候清理 Migrations 合并成一个;

随着后期的改动,逐步增加、修改、删除字段或表。

基本上我的所有项目都是这么搞的,这和项目是否复杂无关。

所以我前面为什么说思路需要转变。

2 如何用Python进行数据计算

numpy计算平均数 标准差 相关系数等基本知识

NumPy 是python 语言的一个第三方库,其支持大量高维度数组与矩阵运算。此外,NumPy 也针对数组运算提供大量的数学函数。

#导入Numpy库,并命名为np

import numpy as np

#创建一维数组

a = np.array([1, 2, 3])

# NumPy可以很方便地创建连续数组,比如我使用arange或linspace函数进行创建:

b = np.arange(1,5,1) // 返回一个有终点和起点、固定步长的排列,如起点是1,终点是4,步长为1,即【1,2,3,4】,

c = np.linspace(1,9,5) 返回一个有终点和起点、元素个数的的排列,如起点是1,终点是9,元素个数为5,即【1,3,5,7,9】

#通过NumPy可以自由地创建等差数组,同时也可以进行加、减、乘、除、求n次方和取余数。

求和:np.sum(a)

求取平均值:np.mean(a)

求取中位数:np.median(a)

求取加权平均数:np.average(a)

求取方差:var() np.var(a)

求取最小值:np.amin(a)

求取最大值:np.amax(a)

将两个数相加:np.add(x1, x2)

将两个数相减:np.subtract(x1, x2)

将两个数相乘:np.multiply(x1, x2)

将两个数相除:np.divide(x1, x2)

立方:np.power(x1, x2)

除余:np.remainder(x1, x2)

相关系数计算:np.corrcoef(a1, a2) (a1、a2都是矩阵)

python中dateframe中的数据怎么加减

使用DataFrame查看数据(类似SQL中的select):

from pandas import DataFrame #从pandas库中引用DataFrame

df_obj = DataFrame() #创建DataFrame对象

df_obj.dtypes #查看各行的数据格式

df_obj.head() #查看前几行的数据,默认前5行

df_obj.tail() #查看后几行的数据,默认后5行

df_obj.index #查看索引

df_obj.columns #查看列名

df_obj.values #查看数据值

df_obj.describe #描述性统计

df_obj.T #转置

df_obj.sort(columns = ‘’)#按列名进行排序

df_obj.sort_index(by=[‘’,’’])#多列排序,使用时报该函数已过时,请用sort_values

df_obj.sort_values(by=['',''])同上!