您的位置:

python神经网络自动删除pre_filter,Python清除

本文目录一览:

python中的filter函数怎么用

filter()函数是 Python 内置的另一个有用的高阶函数,filter()函数接收一个函数 f 和一个list,这个函数 f 的作用是对每个元素进行判断,返回 True或 False,filter()根据判断结果自动过滤掉不符合条件的元素,返回由符合条件元素组成的新list。

例如,要从一个list [1, 4, 6, 7, 9, 12, 17]中删除偶数,保留奇数,首先,要编写一个判断奇数的函数:

def is_odd(x):

return x % 2 == 1

然后,利用filter()过滤掉偶数:

filter(is_odd, [1, 4, 6, 7, 9, 12, 17])

结果:

[1, 7, 9, 17]

利用filter(),可以完成很多有用的功能,例如,删除 None 或者空字符串:

def is_not_empty(s):

return s and len(s.strip()) 0

filter(is_not_empty, ['test', None, '', 'str', ' ', 'END'])

结果:

['test', 'str', 'END']

注意: s.strip(rm) 删除 s 字符串中开头、结尾处的 rm 序列的字符。

当rm为空时,默认删除空白符(包括'\n', '\r', '\t', ' '),如下:

a = ' 123'

a.strip()

'123'

a = '\t\t123\r\n'

a.strip()

'123'

练习:

请利用filter()过滤出1~100中平方根是整数的数,即结果应该是:

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

方法:

import math

def is_sqr(x):

return math.sqrt(x) % 1 == 0

print filter(is_sqr, range(1, 101))

结果:

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

python删除bloomfilter值

1、需要删除字符串的可以使用CountingBloomFilter(CBF)。

2、基于BloomFilter的变体,CBF把基于BloomFilter的每一个Bit改为一个计数器。

3、就可以实现删除bloomfilter字符串的功能了。

利用Python实现卷积神经网络的可视化

在本文中,将探讨如何可视化卷积神经网络(CNN),该网络在计算机视觉中使用最为广泛。首先了解CNN模型可视化的重要性,其次介绍可视化的几种方法,同时以一个用例帮助读者更好地理解模型可视化这一概念。

正如上文中介绍的癌症肿瘤诊断案例所看到的,研究人员需要对所设计模型的工作原理及其功能掌握清楚,这点至关重要。一般而言,一名深度学习研究者应该记住以下几点:

1.1 理解模型是如何工作的

1.2 调整模型的参数

1.3 找出模型失败的原因

1.4 向消费者/终端用户或业务主管解释模型做出的决定

2.可视化CNN模型的方法

根据其内部的工作原理,大体上可以将CNN可视化方法分为以下三类:

初步方法:一种显示训练模型整体结构的简单方法

基于激活的方法:对单个或一组神经元的激活状态进行破译以了解其工作过程

基于梯度的方法:在训练过程中操作前向传播和后向传播形成的梯度

下面将具体介绍以上三种方法,所举例子是使用Keras深度学习库实现,另外本文使用的数据集是由“识别数字”竞赛提供。因此,读者想复现文中案例时,请确保安装好Kears以及执行了这些步骤。

研究者能做的最简单的事情就是绘制出模型结构图,此外还可以标注神经网络中每层的形状及参数。在keras中,可以使用如下命令完成模型结构图的绘制:

model.summary()_________________________________________________________________Layer (type)                 Output Shape              Param #  

=================================================================conv2d_1 (Conv2D)            (None, 26, 26, 32)        320_________________________________________________________________conv2d_2 (Conv2D)            (None, 24, 24, 64)        18496_________________________________________________________________max_pooling2d_1 (MaxPooling2 (None, 12, 12, 64)        0_________________________________________________________________dropout_1 (Dropout)          (None, 12, 12, 64)        0_________________________________________________________________flatten_1 (Flatten)          (None, 9216)              0_________________________________________________________________dense_1 (Dense)              (None, 128)               1179776_________________________________________________________________dropout_2 (Dropout)          (None, 128)               0_________________________________________________________________preds (Dense)                (None, 10)                1290      

=================================================================Total params: 1,199,882Trainable params: 1,199,882Non-trainable params: 0

还可以用一个更富有创造力和表现力的方式呈现模型结构框图,可以使用keras.utils.vis_utils函数完成模型体系结构图的绘制。

另一种方法是绘制训练模型的过滤器,这样就可以了解这些过滤器的表现形式。例如,第一层的第一个过滤器看起来像:

top_layer = model.layers[0]plt.imshow(top_layer.get_weights()[0][:, :, :, 0].squeeze(), cmap='gray')

一般来说,神经网络的底层主要是作为边缘检测器,当层数变深时,过滤器能够捕捉更加抽象的概念,比如人脸等。

为了理解神经网络的工作过程,可以在输入图像上应用过滤器,然后绘制其卷积后的输出,这使得我们能够理解一个过滤器其特定的激活模式是什么。比如,下图是一个人脸过滤器,当输入图像是人脸图像时候,它就会被激活。

from vis.visualization import visualize_activation

from vis.utils import utils

from keras import activations

from matplotlib import pyplot as plt

%matplotlib inline

plt.rcParams['figure.figsize'] = (18, 6)

# Utility to search for layer index by name.

# Alternatively we can specify this as -1 since it corresponds to the last layer.

layer_idx = utils.find_layer_idx(model, 'preds')

# Swap softmax with linear

model.layers[layer_idx].activation = activations.linear

model = utils.apply_modifications(model)

# This is the output node we want to maximize.filter_idx = 0

img = visualize_activation(model, layer_idx, filter_indices=filter_idx)

plt.imshow(img[..., 0])

同理,可以将这个想法应用于所有的类别,并检查它们的模式会是什么样子。

for output_idx in np.arange(10):

  # Lets turn off verbose output this time to avoid clutter and just see the output.

  img = visualize_activation(model, layer_idx, filter_indices=output_idx, input_range=(0., 1.))

  plt.figure()

  plt.title('Networks perception of {}'.format(output_idx))

  plt.imshow(img[..., 0])

在图像分类问题中,可能会遇到目标物体被遮挡,有时候只有物体的一小部分可见的情况。基于图像遮挡的方法是通过一个灰色正方形系统地输入图像的不同部分并监视分类器的输出。这些例子清楚地表明模型在场景中定位对象时,若对象被遮挡,其分类正确的概率显著降低。

为了理解这一概念,可以从数据集中随机抽取图像,并尝试绘制该图的热图(heatmap)。这使得我们直观地了解图像的哪些部分对于该模型而言的重要性,以便对实际类别进行明确的区分。

def iter_occlusion(image, size=8):

    # taken from

  occlusion = np.full((size * 5, size * 5, 1), [0.5], np.float32)

  occlusion_center = np.full((size, size, 1), [0.5], np.float32)

  occlusion_padding = size * 2

  # print('padding...')

  image_padded = np.pad(image, ( \  (occlusion_padding, occlusion_padding), (occlusion_padding, occlusion_padding), (0, 0) \  ), 'constant', constant_values = 0.0)

  for y in range(occlusion_padding, image.shape[0] + occlusion_padding, size):

      for x in range(occlusion_padding, image.shape[1] + occlusion_padding, size):

          tmp = image_padded.copy()

          tmp[y - occlusion_padding:y + occlusion_center.shape[0] + occlusion_padding, \

            x - occlusion_padding:x + occlusion_center.shape[1] + occlusion_padding] \            = occlusion

          tmp[y:y + occlusion_center.shape[0], x:x + occlusion_center.shape[1]] = occlusion_center          yield x - occlusion_padding, y - occlusion_padding, \

            tmp[occlusion_padding:tmp.shape[0] - occlusion_padding, occlusion_padding:tmp.shape[1] - occlusion_padding]i = 23 # for exampledata = val_x[i]correct_class = np.argmax(val_y[i])

# input tensor for model.predictinp = data.reshape(1, 28, 28, 1)# image data for matplotlib's imshowimg = data.reshape(28, 28)

# occlusionimg_size = img.shape[0]

occlusion_size = 4print('occluding...')heatmap = np.zeros((img_size, img_size), np.float32)class_pixels = np.zeros((img_size, img_size), np.int16)

from collections import defaultdict

counters = defaultdict(int)for n, (x, y, img_float) in enumerate(iter_occlusion(data, size=occlusion_size)):

    X = img_float.reshape(1, 28, 28, 1)

    out = model.predict(X)

    #print('#{}: {} @ {} (correct class: {})'.format(n, np.argmax(out), np.amax(out), out[0][correct_class]))

    #print('x {} - {} | y {} - {}'.format(x, x + occlusion_size, y, y + occlusion_size))

    heatmap[y:y + occlusion_size, x:x + occlusion_size] = out[0][correct_class]

    class_pixels[y:y + occlusion_size, x:x + occlusion_size] = np.argmax(out)

    counters[np.argmax(out)] += 1

正如之前的坦克案例中看到的那样,怎么才能知道模型侧重于哪部分的预测呢?为此,可以使用显著图解决这个问题。显著图首先在这篇文章中被介绍。

使用显著图的概念相当直接——计算输出类别相对于输入图像的梯度。这应该告诉我们输出类别值对于输入图像像素中的微小变化是怎样变化的。梯度中的所有正值告诉我们,像素的一个小变化会增加输出值。因此,将这些梯度可视化可以提供一些直观的信息,这种方法突出了对输出贡献最大的显著图像区域。

class_idx = 0indices = np.where(val_y[:, class_idx] == 1.)[0]

# pick some random input from here.idx = indices[0]

# Lets sanity check the picked image.from matplotlib import pyplot as plt%matplotlib inline

plt.rcParams['figure.figsize'] = (18, 6)plt.imshow(val_x[idx][..., 0])

from vis.visualization import visualize_saliency

from vis.utils import utilsfrom keras import activations# Utility to search for layer index by name.

# Alternatively we can specify this as -1 since it corresponds to the last layer.

layer_idx = utils.find_layer_idx(model, 'preds')

# Swap softmax with linearmodel.layers[layer_idx].activation = activations.linear

model = utils.apply_modifications(model)grads = visualize_saliency(model, layer_idx, filter_indices=class_idx, seed_input=val_x[idx])

# Plot with 'jet' colormap to visualize as a heatmap.plt.imshow(grads, cmap='jet')

# This corresponds to the Dense linear layer.for class_idx in np.arange(10):

    indices = np.where(val_y[:, class_idx] == 1.)[0]

    idx = indices[0]

    f, ax = plt.subplots(1, 4)

    ax[0].imshow(val_x[idx][..., 0])

    for i, modifier in enumerate([None, 'guided', 'relu']):

        grads = visualize_saliency(model, layer_idx, filter_indices=class_idx,

        seed_input=val_x[idx], backprop_modifier=modifier)

        if modifier is None:

            modifier = 'vanilla'

        ax[i+1].set_title(modifier)

        ax[i+1].imshow(grads, cmap='jet')

类别激活映射(CAM)或grad-CAM是另外一种可视化模型的方法,这种方法使用的不是梯度的输出值,而是使用倒数第二个卷积层的输出,这样做是为了利用存储在倒数第二层的空间信息。

from vis.visualization import visualize_cam

# This corresponds to the Dense linear layer.for class_idx in np.arange(10):

indices = np.where(val_y[:, class_idx] == 1.)[0]

idx = indices[0]f, ax = plt.subplots(1, 4)

ax[0].imshow(val_x[idx][..., 0])

for i, modifier in enumerate([None, 'guided', 'relu']):

    grads = visualize_cam(model, layer_idx, filter_indices=class_idx,

    seed_input=val_x[idx], backprop_modifier=modifier)

    if modifier is None:

        modifier = 'vanilla'

    ax[i+1].set_title(modifier)

    ax[i+1].imshow(grads, cmap='jet')

本文简单说明了CNN模型可视化的重要性,以及介绍了一些可视化CNN网络模型的方法,希望对读者有所帮助,使其能够在后续深度学习应用中构建更好的模型。 免费视频教程:

python神经网络自动删除pre_filter,Pytho

2023-01-07
python神经网络dnn,Python神经网络库

2022-11-17
神经网络拟合python代码,Python神经网络模型

2022-11-20
关于python语音识别神经网的信息

2022-11-14
python神经网络拟合曲线,神经网络 拟合曲线

2022-11-20
python神级网络与深度学习,python深度神经网络算法

2022-11-18
python神经网络算法函数(python调用神经网络模型)

2022-11-15
python有bp神经网络库吗(bp神经网络预测python

2022-11-08
java神经网络,java神经网络算法

2023-01-09
神经网络python做预测(神经网络预测模型python)

2022-11-12
怎么删除java,怎么删除java相关软件

2022-11-29
ai自动写作python,ai自动写作软件

2022-11-18
java神经网络,java神经网络库

2023-01-05
Python神经网络编程用法介绍

Python在人工智能领域中是非常强大的工具,它提供了许多简单而强大的库和框架来构建人工智能应用程序,其中就包括神经网络编程。神经网络是机器学习和深度学习的基础,在计算机视觉、自然语言处理、语音识别和

2023-12-08
python自动删除图片背景,python关闭图片

2022-11-17
bp神经网络回归python(bp神经网络回归预测pytho

2022-11-11
bp神经网络多分类python,bp神经网络多分类pytho

2022-11-22
KerasDense:高效神经网络层的Python库

2023-05-19
如何清除php,如何清除photoscr

2022-11-21
Python卷积神经网络的深度学习探索

2023-05-16