本文目录一览:
- 1、python中为什么用json有什么作用
- 2、【Python】浅谈python中的json
- 3、python的json模块
- 4、python数据结构json
- 5、如何用Python解析多层嵌套的JSON?
- 6、python 怎么处理json
python中为什么用json有什么作用
今天我也在这个问题上纠结很久。最后才想明白,我来回答下。
网上很多网友总结了json模块的用法,但没说json模块有什么用,干嘛要有这个模块。可能都明白、太简单,觉得没必要说。但作为小白的我不明白,而且在练习使用load()和dump()时遇到错误。
首先纠正,json格式不是字符串。json与python里面的字典是一样的格式。
python的json模块四个方法的作用为:
dumps() # 把数据转成字符串;
loads() # 把字符串符号‘’去掉;
dump(x, f) # 将x的内容直接写入f,不改变格式;
load(x, f) # 读取f保存为x,同样不改变格式。
重点来了,f = open()下的read()的方法,输出是字符串,wirte()方法的输入也必须是字符串。
结论:因为f=open()下的读写方法都必须是字符串,很不方便。而非字符串的数据大多是json格式,所以就有了json模块。方便读写非字符串的数据。
因为这个目的,json模块的loads()和dumps()方法有些鸡肋,还造成困扰,因为明明json不是字符串,干嘛要转成字符串,另外dump()和load()方法表面上和它们不一样。只有明白json模块的目的,才会搞明白。
在python 3.6的说明文档中,把json模块放在了《7.2.文件读写》部分。我也是看到这里才去练习json模块。但出问题,有些糊涂,明白json模块的作用后,才更清楚干嘛把json模块放这里。
小白的浅见,若错误请指教,谢谢。
【Python】浅谈python中的json
一 前言
最近一直在做开发相关的工作--基于Django的web 平台,其中需要从model层传输数据到view 层做数据展示或者做业务逻辑处理。我们采用通用的Json格式--Json(JavaScript Object Notation) 是一种轻量级的数据交换格式,易于阅读和程序解析。
二 认识Json
2.1 Json 结构
常见的Json格式为 “名称/值”对的集合,其中 值可以是对象,列表,字典,字符串等等。比如
backup_data = {"back_to_host": "dbbk0",
"ip_address": "10.10.20.3",
"host_name": "rac4",
"port": 3306}
2.2 使用Json
Python的Json模块序列化与反序列化的过程分别是 编码和解码。这两个过程涉及到两组不同的函数
编码 把一个Python对象编码转换成Json字符串,json.dumps(data)/json.dump(data,file_handler)
解码 把Json格式字符串解码转换成Python对象,json.loads(data)/json.load(file_handler)
在python中要使用Json模块做相关操作,必须先导入:
import Json
2.3 主要函数
编码函数主要有 json.dumps(data)/json.dump(data,file_handler)
json.dumps()的参数是将python对象转换为字符串,如使用json.dumps序列化的对象json_dumps=json.dumps({'a':1, 'b':2}) ,json_dumps='{"b": 2, "a": 1}'
json.dump 是将内置类型序列化为json对象后写入文件。
解码函数主要由json.loads(data)/json.load(file_handler)
json.loads的参数是内存对象,把Json格式字符串解码转换成Python对象,json_loads=json.loads(d_json) #{ b": 2, "a": 1},使用load重新反序列化为dict
json.load()的参数针对文件句柄,比如本地有一个文件/tmp/test.json json_load=json.load(open('/tmp/test.json'))
具体案例参考如下:
In [3]: data={"back_to_host": "rac1",
...: "ip_address": "10.215.20.3",
...: "host_name": "rac3",
...: "port": 3306}
In [7]: json_str=json.dumps(data)
In [8]: print json_str
{"ip_address": "10.215.20.3", "back_to_host": "rac1", "host_name": "rac3", "port": 3306}
In [9]: json_loads=json.load(json_str)
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
ipython-input-9-180506f16431 in module()
---- 1 json_loads=json.load(json_str)
/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/json/__init__.pyc in load(fp, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
284
285 ""
注意 从上面的报错信息来看 json.loads 传参是字符串类型,并不是文件句柄,没有 read()属性。
In [10]: json_loads=json.loads(json_str)
In [11]: print json_loads
{u'back_to_host': u'rac1', u'ip_address': u'10.215.20.3', u'host_name': u'rac3', u'port': 3306}
In [12]: type(json_loads)
Out[12]: dict
In [13]: type(json_str)
Out[13]: str
利用dump 将数据写入 dump.json
In [17]: with open('/tmp/dump.json','w') as f:
...: json.dump(json_str,f)
...:
yangyiDBA:~ yangyi$ cat /tmp/dump.json
"{\"ip_address\": \"10.10.20.3\", \"back_to_host\": \"rac1\", \"host_name\": \"rac3\", \"port\": 3306}"
yangyiDBA:~ yangyi$
利用json.load 将dump.sjon的数据读出来并赋值给 data
In [18]: with open('/tmp/dump.json','r') as f:
...: data=json.load(f)
...:
In [19]: print data
{"ip_address": "10.10.20.3", "back_to_host": "rac1", "host_name": "rac3", "port": 3306}
三 小结
本文算是一篇学习笔记,主要对比了json.loads/json.load , json.dumps/ json.dump 的使用差异 ,方便以后更好的使用json 。
以上为本次分享内容,感谢观看。
python的json模块
json.load不是什么文件都能打开的。。。
Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
import json
d = ['a', 'b', 'c']
with open('a.log', 'w') as f:
... json.dump(d, f)
...
with open('a.log') as f:
... print(f.read())
...
["a", "b", "c"]
with open('a.log') as f:
... a = json.load(f)
... print(a)
...
['a', 'b', 'c']
fname = 'logon_inf.log'
s = [['w', 'w', 'w'], ['e', 'e', 'e'], ['w', 'w', 'w']]
with open(fname, 'w') as f:
... json.dump(s, f)
...
with open(fname) as f:
... print(f.read())
...
[["w", "w", "w"], ["e", "e", "e"], ["w", "w", "w"]]
with open(fname) as f:
... a = json.load(f)
... print(a)
...
[['w', 'w', 'w'], ['e', 'e', 'e'], ['w', 'w', 'w']]
python数据结构json
simplejson 是不错的库,跟json标准库一样
simplejson.loads() # json == dict
simplejson.dumps() # dict == json
import simplejson as json
print json.dumps({"name":"ILOVE爆头"})
{"name": "ILOVE\u7206\u5934"}
print json.loads('{"name": "ILOVE\u7206\u5934"}')["name"]
ILOVE爆头
print json.loads('{"name":"ILOVE爆头"}')["name"]
ILOVE爆头
print json.dumps({"name":"ILOVE爆头", "age":22},sort_keys=True, indent=" ")
{
"age": 22,
"name": "ILOVE\u7206\u5934"
}
可以加Q联系:1126918258
如何用Python解析多层嵌套的JSON?
可以根据jpath解析keyword或路径。
也可以根据实际结果进行剥洋葱似的层层解析处理。
python 怎么处理json
json.dumps()
该函数可以将简单数据类型(int\float\string\tuple\list\dict\unicode)转换成JSON格式,样例代码如下:
import json
src_data = {"name":"Tacey","age":13,"sex":"male","interst":("Programing","Reading")}
#print repr(src_data)
print json.dumps(src_data)
输出如下:
{'interst':('Programing','Reading'),'age':23,'name':'Tacey','sex':'male'}
{"interst":["programing","Reading"],"age":23,"name":"Tacey","sex":mal"}
2、json.loads()
该函数可以将JSON数据转换成Python的简单数据类型,接着上面的代码:
json_data = json.dumps(src_data)
print json.loads(json_data)["name"]
输出结果:
Tacey