本文目录一览:
- 1、北大青鸟设计培训:怎样才能提高Python运行效率?
- 2、#Python干货#python实现——最优化算法
- 3、【Python 】性能优化系列:随机数
- 4、Python怎么做最优化
- 5、优化Python爬虫速度的方法有哪些
北大青鸟设计培训:怎样才能提高Python运行效率?
python逐渐走入人们的视线,成为热门编程语言,随之而来,加入python培训的准程序员大军也成为社会热点。
Python具有许多其他编程语言不具备的优势,譬如能通过极少量代码完成许多操作,以及多进程,能够轻松支持多任务处理。
除了多种优势外,python也有不好的地方,运行较慢,下面电脑培训为大家介绍6个窍门,可以帮你提高python的运行效率。
1.在排序时使用键Python含有许多古老的排序规则,这些规则在你创建定制的排序方法时会占用很多时间,而这些排序方法运行时也会拖延程序实际的运行速度。
最佳的排序方法其实是尽可能多地使用键和内置的sort()方法。
2.交叉编译你的应用开发者有时会忘记计算机其实并不理解用来创建现代应用程序的编程语言。
计算机理解的是机器语言。
为了运行你的应用,你借助一个应用将你所编的人类可读的代码转换成机器可读的代码。
有时,你用一种诸如Python这样的语言编写应用,再以C++这样的语言运行你的应用,这在运行的角度来说,是可行的。
关键在于,你想你的应用完成什么事情,而你的主机系统能提供什么样的资源。
3.关键代码使用外部功能包Python简化了许多编程任务,但是对于一些时间敏感的任务,它的表现经常不尽人意。
使用C/C++或机器语言的外部功能包处理时间敏感任务,可以有效提高应用的运行效率。
这些功能包往往依附于特定的平台,因此你要根据自己所用的平台选择合适的功能包。
简而言之,这个窍门要你牺牲应用的可移植性以换取只有通过对底层主机的直接编程才能获得的运行效率。
4.针对循环的优化每一种编程语言都强调最优化的循环方案。
当使用Python时,你可以借助丰富的技巧让循环程序跑得更快。
然而,开发者们经常遗忘的一个技巧是:尽量避免在循环中访问变量的属性。
5.尝试多种编码方法每次创建应用时都使用同一种编码方法几乎无一例外会导致应用的运行效率不尽人意。
可以在程序分析时尝试一些试验性的办法。
譬如说,在处理字典中的数据项时,你既可以使用安全的方法,先确保数据项已经存在再进行更新,也可以直接对数据项进行更新,把不存在的数据项作为特例分开处理。
6.使用较新的Python版本你要保证自己的代码在新版本里还能运行。
你需要使用新的函数库才能体验新的Python版本,然后你需要在做出关键性的改动时检查自己的应用。
只有当你完成必要的修正之后,你才能体会新版本的不同。
#Python干货#python实现——最优化算法
函数详见rres,此代码使该算法运行了两次
收获:
这是我第一个实现的代码。学习完该算法以后,逻辑框架基本上就有了,剩下需要明确的就是对应的python的语言。于是我就开始了查找“如何定义函数”(详见mofan的优酷),“循环体”和“if条件语句”的格式()“数学符号”(详见mofan的优酷),以及print的使用
1.def是python中指定义,一般用来定义函数,如果需要深度学习搭建网络可用来定义网络。值得注意的一点是
我不清楚为什么,但是如果没有加的话,那个函数公式就是一个花瓶,就像一个结果输不出去。
2.最坑的就是逻辑。一开始逻辑没理清楚,或者说在代码上有疏漏,导致我将left和right放在了循环体里,结果可想而知。不过也是因为这个错误,我知道pycharm中的debug怎么用,挺简单的,百度一下就出来了。
3.不知道什么原因,看的莫烦视频中的print多个变量一起输出是没有办法在我的pycharm中使用的,出来的结果很奇怪。可能是因为我是win10不是ios吧。print如果多个变量一起输出必须是print("名字:%s,名字2:%s"%(a,b))结果输出就是名字:a ,名字2:b
关于python中数据变量。第一遍运行结果出现很明显不对,于是我采用了debug。结果发现,mid1处一直为1而不是1.5,于是就开始了解数据变量。起初我猜测python默认所有变量为整型,但是根据二分法的结果我意识到此猜测不对,所以要改整个file的变量格式没有必要。所以我就在mid1式子前面加了一个float,结果就显示为1.5了。但是如果我将整个式子用()括起来,前面加float,结果还是1。我不太理解为什么。不过我知道了python的数据格式是根据输入量决定的,也就是说你的输入量如果是整型,那么与其直接相关的计算输出结果一定是整型,而且还是不采用进位的整型。在我没有采用+float/+.0这两种方法之前,mid1~3全部是整型。
或者不再mid1前面加float,直接将输入量后面点个点就行
真的很想吐槽一下print,好麻烦啊啊啊啊每次都得弄个%s,而且有时候还不能放一起!!!!
不要问我掌握了什么,要问我现在写完这个代码后有多么的爱python的精度表示 :-)我决定以后只要再编写数学公式的代码都将输入量的小数学点后面补很多0
fibonacci函数定义,每次debug后我的手都是抖的O( _ )O~
不知道自己什么时候有的强迫症,只要是代码下面有“~”我就必须要消掉。笑哭。这个很简单,前四个除了费波纳茨,都很简单。
这个公式看起来很麻烦,便写的时候更要谨慎。我上回把那个2搁在了分号下面,结果很大,所以还是换算成0.5更好(PS:勿忘那长河般的0)。
虽然代码很长,但是主要是因为print太多。本打算在开头print,最后结果会漏掉最后一部分。懒得想其他办法了,直接就这样吧
一开始while里面写成了,导致run不出来。继而,debug也没法用。在网上一查才知道 “没联网”+“没选断点”。最后想尝试将else里面的内容输出来,结果发现run以后被刷屏了。于是改成i7以后还是不行,于是想着加一个break跳出循环,结果成效了。
然后刚刚由debug了一下,才知道原来是i+1在if里面,因为没有办法+1,所以i=6一直存在,就不断循环。因为加break也好,i+1也好,都可以。
这是我第一组自己实现的python代码,就是数学公式用python语言组装起来。刚开始的时候知道大概需要在语言中体现什么,但不太清楚。于是我就在网上找了几个二分法的,他们都各有不同,但框架都差不多,不过如果要用到我们的那个公式里还需要改变很多。然后我就开始分析我们的题,我发现大体需要两部分,一部分函数定义,一部分循环体。但我不知道如何定义函数,如何写数学公式,如何弄变量,也就是说一些小点不太会,所以我选择直接百度。因为我知道自己阅读的能力不错,相比于从视频中提取要素,我更擅长通过阅读获得要点。有目的性地找知识点,掌握地更牢固。
于是我就开始了第一个——二分法的编写。我发现,自己出现了很多错误而且有很多地方都很基础。但我依然没选择视频,而是将这些问题直接在百度上找,因为视频讲完或许你也没找到点。当然,这是一步一步走的,不是直接就将程序摆上去,一点一点改。
随着前两个的成功,我发现自己对于这些代码有了自信,似乎看透了他们的伪装,抓住了本质。除此之外,我还意识到自己自从8月份以后,学习能力似乎提高了不少,而且有了更为有效的学习方法。各方面都有了一定的觉醒。除了第一个找了几个牛头不对马嘴的代码,其他都是根据自己的逻辑写,逻辑通下来以后,对应语言中某一部分不知道如何翻译就去百度,其实这几个套路都一样或者说数学公式转化的套路都一样。
我还意识到,汇编其实是最难的语言,目前为止所学到的,因为很多都需要自己去定义,去死抠,需要记住大量的指令且不能灵活变通。但是其他的却只需要将一些对应的记下来就好。python真的挺简单的。而且,我发现自己今天似乎打开了新世界的大门,我爱上了这种充满了灵性的东西,充满了严谨的美丽,还有那未知的变化,我发现我似乎爱上了代码。可能不仅仅局限于python,这些语言都充满了挑战性。我觉得当你疑惑的时候,就需要相信直觉,至少我发现它很准
【Python 】性能优化系列:随机数
最近在做的项目重点部分与大量生成随机数有关,维度高达[1700000,10000],需要生成 10 x 30 次左右,这里遇到内存和速度的双重瓶颈,特地研究了一下如何优化随机数。
优化时间测试所需的分析工具在另一篇博客《性能优化系列一:分析工具》中提到。
原生的python中也有随机模块生成 random.randint 和 random.random 等,但是速度非常慢,numpy 速度可以大幅提升。一般都采用numpy生成随机数。
比较常用的就是以上几种。在需要生成大量随机数的情况下,或生成伪随机数的情况下,python 3.7 常用 RandomState 。
直接生成大规模非稀疏矩阵如下,经常遇到 MemoryError 的错误,大概是同时生成多个float64精度的大规模随机矩阵服务器内存不够,而random state 似乎也没提供调整类型的attr,
这时最好使用即使生成即使销毁,仅保留种子作为索引,同样,多个CPU之间共享大规模矩阵涉及到共享内存或数据传输同步较慢的问题,最好也共享seed而不是直接共享矩阵。
ps. 这里注意一般我们设置time.time()为种子时,对于并发性程序是无效的,不要在并发程序中同时定义,建议生成一个seed list 列表再从中取。
这里可以对大规模矩阵进行分片以进行后续的np 乘法,再切片赋值,以时间换内存。这种情况的麻烦在于如果设定随机数种子会导致每个分片的随机数相同。可以利用一个最初seed(爷爷种子)randint生成 一组切片组数的seed(父亲种子),再每次从中取不同的随机数。
在上述切片方法尝试之后,可以解决内存问题。但是时间非常慢,特别是采取s = 1时在standard normal 上调用170万次的时间长达3000s,line search一下搜索了大约100000为切片值仍然太慢。在文档中发现了 BitGenerator 和 Generator ,大约可以提速到原来的 1/3。
除了Numpy和基本模块之外,AES CTR 加密算法生成随机数也很快,但是并不能有比较方便的方式控制每次生成的一样。参见以下reference。
tensorflow 和 pytorch 也都有大规模生成随机tensor的方式。性能待考。
1. 超快生成随机数的方式CSDN博客
2. tensorflow 生成随机tensor
Python怎么做最优化
一、概观scipy中的optimize子包中提供了常用的最优化算法函数实现。我们可以直接调用这些函数完成我们的优化问题。optimize中函数最典型的特点就是能够从函数名称上看出是使用了什么算法。下面optimize包中函数的概览:1.非线性最优化fmin -- 简单Nelder-Mead算法fmin_powell -- 改进型Powell法fmin_bfgs -- 拟Newton法fmin_cg -- 非线性共轭梯度法fmin_ncg -- 线性搜索Newton共轭梯度法leastsq -- 最小二乘2.有约束的多元函数问题fmin_l_bfgs_b ---使用L-BFGS-B算法fmin_tnc ---梯度信息fmin_cobyla ---线性逼近fmin_slsqp ---序列最小二乘法nnls ---解|| Ax - b ||_2 for x=03.全局优化anneal ---模拟退火算法brute --强力法4.标量函数fminboundbrentgoldenbracket5.拟合curve_fit-- 使用非线性最小二乘法拟合6.标量函数求根brentq ---classic Brent (1973)brenth ---A variation on the classic Brent(1980)ridder ---Ridder是提出这个算法的人名bisect ---二分法newton ---牛顿法fixed_point7.多维函数求根fsolve ---通用broyden1 ---Broyden’s first Jacobian approximation.broyden2 ---Broyden’s second Jacobian approximationnewton_krylov ---Krylov approximation for inverse Jacobiananderson ---extended Anderson mixingexcitingmixing ---tuned diagonal Jacobian approximationlinearmixing ---scalar Jacobian approximationdiagbroyden ---diagonal Broyden Jacobian approximation8.实用函数line_search ---找到满足强Wolfe的alpha值check_grad ---通过和前向有限差分逼近比较检查梯度函数的正确性二、实战非线性最优化fmin完整的调用形式是:fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None)不过我们最常使用的就是前两个参数。一个描述优化问题的函数以及初值。后面的那些参数我们也很容易理解。如果您能用到,请自己研究。下面研究一个最简单的问题,来感受这个函数的使用方法:f(x)=x**2-4*x+8,我们知道,这个函数的最小值是4,在x=2的时候取到。from scipy.optimize import fmin #引入优化包def myfunc(x):return x**2-4*x+8 #定义函数x0 = [1.3] #猜一个初值xopt = fmin(myfunc, x0) #求解print xopt #打印结果运行之后,给出的结果是:Optimization terminated successfully.Current function value: 4.000000Iterations: 16Function evaluations: 32[ 2.00001953]程序准确的计算得出了最小值,不过最小值点并不是严格的2,这应该是由二进制机器编码误差造成的。除了fmin_ncg必须提供梯度信息外,其他几个函数的调用大同小异,完全类似。我们不妨做一个对比:from scipy.optimize import fmin,fmin_powell,fmin_bfgs,fmin_cgdef myfunc(x):return x**2-4*x+8x0 = [1.3]xopt1 = fmin(myfunc, x0)print xopt1printxopt2 = fmin_powell(myfunc, x0)print xopt2printxopt3 = fmin_bfgs(myfunc, x0)print xopt3printxopt4 = fmin_cg(myfunc,x0)print xopt4给出的结果是:Optimization terminated successfully.Current function value: 4.000000Iterations: 16Function evaluations: 32[ 2.00001953]Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 531.99999999997Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 12Gradient evaluations: 4[ 2.00000001]Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 15Gradient evaluations: 5[ 2.]我们可以根据给出的消息直观的判断算法的执行情况。每一种算法数学上的问题,请自己看书学习。个人感觉,如果不是纯研究数学的工作,没必要搞清楚那些推导以及定理云云。不过,必须了解每一种算法的优劣以及能力所及。在使用的时候,不妨多种算法都使用一下,看看效果分别如何,同时,还可以互相印证算法失效的问题。在from scipy.optimize import fmin之后,就可以使用help(fmin)来查看fmin的帮助信息了。帮助信息中没有例子,但是给出了每一个参数的含义说明,这是调用函数时候的最有价值参考。有源码研究癖好的,或者当你需要改进这些已经实现的算法的时候,可能需要查看optimize中的每种算法的源代码。在这里:https:/ / github. com/scipy/scipy/blob/master/scipy/optimize/optimize.py聪明的你肯定发现了,顺着这个链接往上一级、再往上一级,你会找到scipy的几乎所有源码!
优化Python爬虫速度的方法有哪些
很多爬虫工作者都遇到过抓取非常慢的问题,尤其是需要采集大量数据的情况下。那么如何提高爬虫采集效率就十分关键,那一块了解如何提高爬虫采集效率问题。
1.尽可能减少网站访问次数
单次爬虫的主要把时间消耗在网络请求等待响应上面,所以能减少网站访问就减少网站访问,既减少自身的工作量,也减轻网站的压力,还降低被封的风险。
第一步要做的就是流程优化,尽量精简流程,避免在多个页面重复获取。
随后去重,同样是十分重要的手段,一般根据url或者id进行唯一性判别,爬过的就不再继续爬了。
2.分布式爬虫
即便把各种法子都用尽了,单机单位时间内能爬的网页数仍是有限的,面对大量的网页页面队列,可计算的时间仍是很长,这种情况下就必须要用机器换时间了,这就是分布式爬虫。
第一步,分布式并不是爬虫的本质,也并不是必须的,对于互相独立、不存在通信的任务就可手动对任务分割,随后在多个机器上各自执行,减少每台机器的工作量,费时就会成倍减少。
例如有200W个网页页面待爬,可以用5台机器各自爬互不重复的40W个网页页面,相对来说单机费时就缩短了5倍。
可是如果存在着需要通信的状况,例如一个变动的待爬队列,每爬一次这个队列就会发生变化,即便分割任务也就有交叉重复,因为各个机器在程序运行时的待爬队列都不一样了——这种情况下只能用分布式,一个Master存储队列,其他多个Slave各自来取,这样共享一个队列,取的情况下互斥也不会重复爬取。IPIDEA提供高匿稳定的IP同时更注重用户隐私的保护,保障用户的信息安全。含有240+国家地区的ip,支持API批量使用,支持多线程高并发使用。