您的位置:

空间注意力的阐述

一、空间注意力的概念

空间注意力是指人类大脑在处理感知信息时,在一定的空间范围内,对某些信息进行有意识地加工以及加以记录,而对其他信息则不予理会。空间注意力注重的是在空间上的区分,它随着时间的推移会引导视线和注意力向新的视觉目标位置转移,在视觉场景中发挥了至关重要的作用。


// 空间注意力模型的实现
import torch
import torch.nn as nn
import torch.nn.functional as F

class SpatialAttention(nn.Module):
  def __init__(self, kernel_size=3):
    super(SpatialAttention, self).__init__()
    self.conv = nn.Conv2d(in_channels=3,
                          out_channels=1,
                          kernel_size=kernel_size,
                          padding=padding,
                          bias=False)

  def forward(self, x):
    conv_out = self.conv(x)
    output = torch.sigmoid(conv_out)
    return output * x

二、空间注意力的作用

空间注意力可以帮助我们更好地感知环境,提高注意力的聚焦度,从而加强目标信息的处理。空间注意力可以用于图像识别、人脸识别、行为识别等方面,在生产和生活中有着广泛的应用。

三、空间注意力的应用

1. 图像识别

图像识别是空间注意力应用的一个重要方面。将空间注意力应用于图像识别任务中,可以使模型着重关注图像中重要的区域,提高模型的准确率。


# 空间注意力在图像分类模型中的应用
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict

class SpatialAttentionNet(nn.Module):
  def __init__(self, num_classes=10):
    super(SpatialAttentionNet, self).__init__()

    self.conv = nn.Sequential(OrderedDict([
      ('conv1', nn.Conv2d(in_channels=3,
                          out_channels=32,
                          kernel_size=3,
                          padding=1)),
      ('relu1', nn.ReLU(inplace=True)),

      ('conv2', nn.Conv2d(in_channels=32,
                          out_channels=64,
                          kernel_size=3,
                          padding=1)),
      ('relu2', nn.ReLU(inplace=True)),

      ('pool1', nn.MaxPool2d(kernel_size=2,
                             stride=2)),

      ('conv3', nn.Conv2d(in_channels=64,
                          out_channels=128,
                          kernel_size=3,
                          padding=1)),
      ('relu3', nn.ReLU(inplace=True)),

      ('attention1', SpatialAttention()),

      ('conv4', nn.Conv2d(in_channels=128,
                          out_channels=128,
                          kernel_size=3,
                          padding=1)),
      ('relu4', nn.ReLU(inplace=True)),

      ('conv5', nn.Conv2d(in_channels=128,
                          out_channels=256,
                          kernel_size=3,
                          padding=1)),
      ('relu5', nn.ReLU(inplace=True)),

      ('pool2', nn.MaxPool2d(kernel_size=2,
                             stride=2)),

      ('conv6', nn.Conv2d(in_channels=256,
                          out_channels=256,
                          kernel_size=3,
                          padding=1)),
      ('relu6', nn.ReLU(inplace=True)),

      ('attention2', SpatialAttention()),

      ('conv7', nn.Conv2d(in_channels=256,
                          out_channels=512,
                          kernel_size=3,
                          padding=1)),
      ('relu7', nn.ReLU(inplace=True)),

      ('pool3', nn.MaxPool2d(kernel_size=2,
                             stride=2)),
      ('flatten', nn.Flatten()),

      ('fc1', nn.Linear(in_features=512 * 4 * 4,
                        out_features=1024)),
      ('relu8', nn.ReLU(inplace=True)),

      ('fc2', nn.Linear(in_features=1024,
                        out_features=num_classes))
    ]))

  def forward(self, x):
    x = self.conv(x)
    return F.log_softmax(x, dim=1)

2. 人脸识别

空间注意力在人脸识别中的应用,可以将目光集中在人脸的关键特征点上,提高人脸的检测和识别准确率。


# Spatial Attention在人脸识别中的应用
import cv2
import numpy as np

cap = cv2.VideoCapture(0)
face_cascade = cv2.CascadeClassifier("path-to-haarcascade-face.xml")

while True:
  ret, frame = cap.read()
  gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
  faces = face_cascade.detectMultiScale(gray, scaleFactor=1.5, minNeighbors=5)

  for (x, y, w, h) in faces:
    face_roi = frame[y:y + h, x:x + w]
    face_gray = cv2.cvtColor(face_roi, cv2.COLOR_BGR2GRAY)
    face_gray = cv2.resize(face_gray, (50, 50))
    
    face_gray = np.expand_dims(face_gray, axis=0)
    face_gray = np.expand_dims(face_gray, axis=0)

    attention = SpatialAttention(kernel_size=3)
    face_gray = attention(face_gray)

    cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
  
  cv2.imshow("frame", frame)
  
  if cv2.waitKey(1) & 0xFF == ord('q'):
    break

cap.release()
cv2.destroyAllWindows()

3. 行为识别

空间注意力在行为识别中的应用,可以将目光集中于被观察者的重要行为特征上,提高行为识别的准确率。


# 空间注意力在行为识别中的应用
import torch
import torch.nn as nn

class BehaviorNet(nn.Module):
  def __init__(self, num_labels=5):
    super(BehaviorNet, self).__init__()
    
    self.cnn = nn.Sequential(
      nn.Conv2d(in_channels=3,
                out_channels=32,
                kernel_size=3,
                padding=1),
      nn.ReLU(),
      nn.MaxPool2d(kernel_size=2),
      nn.Conv2d(in_channels=32,
                out_channels=64,
                kernel_size=3,
                padding=1),
      nn.ReLU(),
      nn.MaxPool2d(kernel_size=2),
      nn.Conv2d(in_channels=64,
                out_channels=128,
                kernel_size=3,
                padding=1),
      nn.ReLU(),
      SpatialAttention(kernel_size=3),
      nn.MaxPool2d(kernel_size=2),
      nn.Flatten(),
      nn.Linear(in_features=128*3*3,
                out_features=256),
      nn.ReLU(),
      nn.Dropout(0.4),
    )

    self.fc = nn.Linear(in_features=256,
                        out_features=num_labels)

    self.softmax = nn.Softmax(dim=1)
  
  def forward(self, x):
    cnn_out = self.cnn(x)
    effect_size = cnn_out.transpose(2,1).transpose(1,3).transpose(3,2)
    attention = SpatialAttention(kernel_size=3)
    attention_out = attention(effect_size)
    cnn_att = attention_out.transpose(3,2).transpose(1,3).transpose(2,1)
    fc_out = self.fc(cnn_att)
    output = self.softmax(fc_out)
    return output