一、DQN 简介
强化学习是机器学习中的一个重要分支,旨在让计算机能够通过不断的试错学习来完成任务。其中,DQN(Deep Q-Network)是一种经典的强化学习算法,它最早由DeepMind提出,在英国皇家学会的《自然》杂志上发表。DQN使用了神经网络来学习一个价值函数,能够在各种游戏和控制任务中表现出色。
对于一个有限状态、有限动作的MDP(马尔可夫决策过程),DQN算法设计了神经网络,输入为状态的向量,输出为各个动作对应的Q值。Q值代表在当前状态下采取某个动作获得的收益期望。通过不断地更新神经网络的参数,DQN算法能够使得Q值逼近真实的价值函数,从而让智能体做出更好的决策。
二、DQN PyTorch 代码实现
以下是一个简单的DQN PyTorch的代码实现,用于实现OpenAI Gym中的CartPole游戏。
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import random
import numpy as np
from collections import deque
# 定义网络结构
class QNet(nn.Module):
def __init__(self, state_size, action_size):
super(QNet, self).__init__()
self.fc1 = nn.Linear(state_size, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, action_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义经验回放缓存类
class ReplayBuffer():
def __init__(self, buffer_size):
self.buffer = deque(maxlen=buffer_size)
def add(self, state, action, reward, next_state, done):
self.buffer.append((state, action, reward, next_state, done))
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = zip(*batch)
return np.array(state), \
np.array(action), \
np.array(reward, dtype=np.float32), \
np.array(next_state), \
np.array(done, dtype=np.uint8)
class DQNAgent():
def __init__(self, state_size, action_size, buffer_size, batch_size, lr, gamma, epsilon):
self.state_size = state_size
self.action_size = action_size
self.buffer = ReplayBuffer(buffer_size)
self.batch_size = batch_size
self.gamma = gamma
self.epsilon = epsilon
self.q_net = QNet(state_size, action_size)
self.target_net = QNet(state_size, action_size)
self.target_net.load_state_dict(self.q_net.state_dict())
self.optimizer = optim.Adam(self.q_net.parameters(), lr=lr)
def update_target_net(self):
self.target_net.load_state_dict(self.q_net.state_dict())
def act(self, state):
if random.random() < self.epsilon:
return random.randint(0, self.action_size-1)
else:
state = torch.FloatTensor(state).unsqueeze(0)
with torch.no_grad():
q_values = self.q_net(state)
max_q_value, action = torch.max(q_values, dim=1)
return action.item()
def learn(self):
states, actions, rewards, next_states, dones = self.buffer.sample(self.batch_size)
states = torch.FloatTensor(states)
actions = torch.LongTensor(actions)
rewards = torch.FloatTensor(rewards)
next_states = torch.FloatTensor(next_states)
dones = torch.FloatTensor(dones)
q_values = self.q_net(states).gather(1, actions.unsqueeze(1)).squeeze(1)
next_q_values = self.target_net(next_states).max(1)[0]
expected_q_values = rewards + self.gamma * next_q_values * (1 - dones)
loss = F.smooth_l1_loss(q_values, expected_q_values.detach())
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# 处理状态
def preprocess_state(state):
return np.array(state)
# 超级参数
state_size = 4
action_size = 2
buffer_size = 1000000
batch_size = 64
lr = 0.001
gamma = 0.99
epsilon = 0.1
num_episodes = 1000
max_steps = 200
# 初始化智能体
agent = DQNAgent(state_size, action_size, buffer_size, batch_size, lr, gamma, epsilon)
# 游戏循环
for i_episode in range(num_episodes):
state = preprocess_state(env.reset())
total_reward = 0
for t in range(max_steps):
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
next_state = preprocess_state(next_state)
agent.buffer.add(state, action, reward, next_state, done)
if len(agent.buffer.buffer) > agent.batch_size:
agent.learn()
if t % 10 == 0:
agent.update_target_net()
state = next_state
total_reward += reward
if done:
break
print("Episode: %d, total reward: %d" % (i_episode, total_reward))
三、DQN PyTorch 参数解释
在上述代码实现的过程中,我们用到了许多超级参数。下面,我们对这些参数进行一下解释。
1、state_size
指状态向量的维度。2、action_size
指动作空间的大小。3、buffer_size
指经验回放缓存的大小。4、batch_size
指每次学习时从经验回放缓存中随机采样的样本数量。5、lr
指网络训练时使用的学习率。6、gamma
指折扣率,用于调整未来奖励的权重。7、epsilon
指ε-greedy策略中的ε值。8、num_episodes
指训练智能体时的总回合数。9、max_steps
指每个回合中的最大步数。四、DQN PyTorch 算法总结
综上所述,DQN PyTorch是一种有效的强化学习算法,可以用于各种游戏和控制任务中。通过神经网络的学习,DQN算法能够不断优化智能体的决策,从而实现更好的任务表现。在实际应用中,我们需要根据具体的任务和情况,调整超级参数以获得更好的性能。