您的位置:

python导出回归结果,python怎么导出结果

本文目录一览:

python 的LinearRegression包,怎么导出回归模型公式?

线性回归是机器学习算法中最简单的算法之一,它是监督学习的一种算法,主要思想是在给定训练集上学习得到一个线性函数,在损失函数的约束下,求解相关系数,最终在测试集上测试模型的回归效果。

也就是说 LinearRegression 模型会构造一个线性回归公式

y' = w^T x + b

,其中 w 和 x 均为向量,w 就是系数,截距是 b,得分是根据真实的 y 值和预测值 y' 计算得到的。

python回归模型保存

1、首先需要使用公式将回归结果计算出来。

2、其次选择回归。

3、最后将其另存为,另存为到word中就可以保存了。Python由荷兰数学和计算机科学研究学会的吉多范罗苏姆于1990年代初设计,作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构,还能简单有效地面向对象编程。

python多元线性回归怎么计算

1、什么是多元线性回归模型?

当y值的影响因素不唯一时,采用多元线性回归模型。

y =y=β0+β1x1+β2x2+...+βnxn

例如商品的销售额可能不电视广告投入,收音机广告投入,报纸广告投入有关系,可以有 sales =β0+β1*TV+β2* radio+β3*newspaper.

2、使用pandas来读取数据

pandas 是一个用于数据探索、数据分析和数据处理的python库

[python] view plain copy

import pandas as pd

[html] view plain copy

pre name="code" class="python"# read csv file directly from a URL and save the results

data = pd.read_csv('/home/lulei/Advertising.csv')

# display the first 5 rows

data.head()

上面代码的运行结果:

    TV  Radio  Newspaper  Sales

0  230.1   37.8       69.2   22.1

1   44.5   39.3       45.1   10.4

2   17.2   45.9       69.3    9.3

3  151.5   41.3       58.5   18.5

4  180.8   10.8       58.4   12.9

上面显示的结果类似一个电子表格,这个结构称为Pandas的数据帧(data frame),类型全称:pandas.core.frame.DataFrame.

pandas的两个主要数据结构:Series和DataFrame:

Series类似于一维数组,它有一组数据以及一组与之相关的数据标签(即索引)组成。

DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典。

[python] view plain copy

# display the last 5 rows

data.tail()

只显示结果的末尾5行

       TV  Radio  Newspaper  Sales

195   38.2    3.7       13.8    7.6

196   94.2    4.9        8.1    9.7

197  177.0    9.3        6.4   12.8

198  283.6   42.0       66.2   25.5

199  232.1    8.6        8.7   13.4

[html] view plain copy

# check the shape of the DataFrame(rows, colums)

data.shape

查看DataFrame的形状,注意第一列的叫索引,和数据库某个表中的第一列类似。

(200,4) 

3、分析数据

特征:

TV:对于一个给定市场中单一产品,用于电视上的广告费用(以千为单位)

Radio:在广播媒体上投资的广告费用

Newspaper:用于报纸媒体的广告费用

响应:

Sales:对应产品的销量

在这个案例中,我们通过不同的广告投入,预测产品销量。因为响应变量是一个连续的值,所以这个问题是一个回归问题。数据集一共有200个观测值,每一组观测对应一个市场的情况。

注意:这里推荐使用的是seaborn包。网上说这个包的数据可视化效果比较好看。其实seaborn也应该属于matplotlib的内部包。只是需要再次的单独安装。

[python] view plain copy

import seaborn as sns

import matplotlib.pyplot as plt

# visualize the relationship between the features and the response using scatterplots

sns.pairplot(data, x_vars=['TV','Radio','Newspaper'], y_vars='Sales', size=7, aspect=0.8)

plt.show()#注意必须加上这一句,否则无法显示。

[html] view plain copy

这里选择TV、Radio、Newspaper 作为特征,Sales作为观测值

[html] view plain copy

返回的结果:

seaborn的pairplot函数绘制X的每一维度和对应Y的散点图。通过设置size和aspect参数来调节显示的大小和比例。可以从图中看出,TV特征和销量是有比较强的线性关系的,而Radio和Sales线性关系弱一些,Newspaper和Sales线性关系更弱。通过加入一个参数kind='reg',seaborn可以添加一条最佳拟合直线和95%的置信带。

[python] view plain copy

sns.pairplot(data, x_vars=['TV','Radio','Newspaper'], y_vars='Sales', size=7, aspect=0.8, kind='reg')

plt.show()

结果显示如下:

4、线性回归模型

优点:快速;没有调节参数;可轻易解释;可理解。

缺点:相比其他复杂一些的模型,其预测准确率不是太高,因为它假设特征和响应之间存在确定的线性关系,这种假设对于非线性的关系,线性回归模型显然不能很好的对这种数据建模。

线性模型表达式: y=β0+β1x1+β2x2+...+βnxn 其中

y是响应

β0是截距

β1是x1的系数,以此类推

在这个案例中: y=β0+β1∗TV+β2∗Radio+...+βn∗Newspaper

(1)、使用pandas来构建X(特征向量)和y(标签列)

scikit-learn要求X是一个特征矩阵,y是一个NumPy向量。

pandas构建在NumPy之上。

因此,X可以是pandas的DataFrame,y可以是pandas的Series,scikit-learn可以理解这种结构。

[python] view plain copy

#create a python list of feature names

feature_cols = ['TV', 'Radio', 'Newspaper']

# use the list to select a subset of the original DataFrame

X = data[feature_cols]

# equivalent command to do this in one line

X = data[['TV', 'Radio', 'Newspaper']]

# print the first 5 rows

print X.head()

# check the type and shape of X

print type(X)

print X.shape

输出结果如下:

     TV  Radio  Newspaper

0  230.1   37.8       69.2

1   44.5   39.3       45.1

2   17.2   45.9       69.3

3  151.5   41.3       58.5

4  180.8   10.8       58.4

class 'pandas.core.frame.DataFrame'

(200, 3)

[python] view plain copy

# select a Series from the DataFrame

y = data['Sales']

# equivalent command that works if there are no spaces in the column name

y = data.Sales

# print the first 5 values

print y.head()

输出的结果如下:

0    22.1

1    10.4

2     9.3

3    18.5

4    12.9

Name: Sales

(2)、构建训练集与测试集

[html] view plain copy

pre name="code" class="python"span style="font-size:14px;"##构造训练集和测试集

from sklearn.cross_validation import train_test_split  #这里是引用了交叉验证

X_train,X_test, y_train, y_test = train_test_split(X, y, random_state=1)

#default split is 75% for training and 25% for testing

[html] view plain copy

print X_train.shape

print y_train.shape

print X_test.shape

print y_test.shape

输出结果如下:

(150, 3)

(150,)

(50, 3)

(50,)

注:上面的结果是由train_test_spilit()得到的,但是我不知道为什么我的版本的sklearn包中居然报错:

ImportError                               Traceback (most recent call last)ipython-input-182-3eee51fcba5a in module()      1 ###构造训练集和测试集---- 2 from sklearn.cross_validation import train_test_split      3 #import sklearn.cross_validation      4 X_train,X_test, y_train, y_test = train_test_split(X, y, random_state=1)      5 # default split is 75% for training and 25% for testingImportError: cannot import name train_test_split

处理方法:1、我后来重新安装sklearn包。再一次调用时就没有错误了。

2、自己写函数来认为的随机构造训练集和测试集。(这个代码我会在最后附上。)

(3)sklearn的线性回归

[html] view plain copy

from sklearn.linear_model import LinearRegression

linreg = LinearRegression()

model=linreg.fit(X_train, y_train)

print model

print linreg.intercept_

print linreg.coef_

输出的结果如下:

LinearRegression(copy_X=True, fit_intercept=True, normalize=False)

2.66816623043

[ 0.04641001  0.19272538 -0.00349015]

[html] view plain copy

# pair the feature names with the coefficients

zip(feature_cols, linreg.coef_)

输出如下:

[('TV', 0.046410010869663267),

('Radio', 0.19272538367491721),

('Newspaper', -0.0034901506098328305)]

y=2.668+0.0464∗TV+0.192∗Radio-0.00349∗Newspaper

如何解释各个特征对应的系数的意义?

对于给定了Radio和Newspaper的广告投入,如果在TV广告上每多投入1个单位,对应销量将增加0.0466个单位。就是加入其它两个媒体投入固定,在TV广告上每增加1000美元(因为单位是1000美元),销量将增加46.6(因为单位是1000)。但是大家注意这里的newspaper的系数居然是负数,所以我们可以考虑不使用newspaper这个特征。这是后话,后面会提到的。

(4)、预测

[python] view plain copy

y_pred = linreg.predict(X_test)

print y_pred

[python] view plain copy

print type(y_pred)

输出结果如下:

[ 14.58678373   7.92397999  16.9497993   19.35791038   7.36360284

  7.35359269  16.08342325   9.16533046  20.35507374  12.63160058

 22.83356472   9.66291461   4.18055603  13.70368584  11.4533557

  4.16940565  10.31271413  23.06786868  17.80464565  14.53070132

 15.19656684  14.22969609   7.54691167  13.47210324  15.00625898

 19.28532444  20.7319878   19.70408833  18.21640853   8.50112687

  9.8493781    9.51425763   9.73270043  18.13782015  15.41731544

  5.07416787  12.20575251  14.05507493  10.6699926    7.16006245

 11.80728836  24.79748121  10.40809168  24.05228404  18.44737314

 20.80572631   9.45424805  17.00481708   5.78634105   5.10594849]

type 'numpy.ndarray'

5、回归问题的评价测度

(1) 评价测度

对于分类问题,评价测度是准确率,但这种方法不适用于回归问题。我们使用针对连续数值的评价测度(evaluation metrics)。

这里介绍3种常用的针对线性回归的测度。

1)平均绝对误差(Mean Absolute Error, MAE)

(2)均方误差(Mean Squared Error, MSE)

(3)均方根误差(Root Mean Squared Error, RMSE)

这里我使用RMES。

[python] view plain copy

pre name="code" class="python"#计算Sales预测的RMSE

print type(y_pred),type(y_test)

print len(y_pred),len(y_test)

print y_pred.shape,y_test.shape

from sklearn import metrics

import numpy as np

sum_mean=0

for i in range(len(y_pred)):

sum_mean+=(y_pred[i]-y_test.values[i])**2

sum_erro=np.sqrt(sum_mean/50)

# calculate RMSE by hand

print "RMSE by hand:",sum_erro

最后的结果如下:

type 'numpy.ndarray' class 'pandas.core.series.Series'

50 50

(50,) (50,)

RMSE by hand: 1.42998147691

(2)做ROC曲线

[python] view plain copy

import matplotlib.pyplot as plt

plt.figure()

plt.plot(range(len(y_pred)),y_pred,'b',label="predict")

plt.plot(range(len(y_pred)),y_test,'r',label="test")

plt.legend(loc="upper right") #显示图中的标签

plt.xlabel("the number of sales")

plt.ylabel('value of sales')

plt.show()

显示结果如下:(红色的线是真实的值曲线,蓝色的是预测值曲线)

直到这里整个的一次多元线性回归的预测就结束了。

6、改进特征的选择

在之前展示的数据中,我们看到Newspaper和销量之间的线性关系竟是负关系(不用惊讶,这是随机特征抽样的结果。换一批抽样的数据就可能为正了),现在我们移除这个特征,看看线性回归预测的结果的RMSE如何?

依然使用我上面的代码,但只需修改下面代码中的一句即可:

[python] view plain copy

#create a python list of feature names

feature_cols = ['TV', 'Radio', 'Newspaper']

# use the list to select a subset of the original DataFrame

X = data[feature_cols]

# equivalent command to do this in one line

#X = data[['TV', 'Radio', 'Newspaper']]#只需修改这里即可pre name="code" class="python" style="font-size: 15px; line-height: 35px;"X = data[['TV', 'Radio']]  #去掉newspaper其他的代码不变

# print the first 5 rowsprint X.head()# check the type and shape of Xprint type(X)print X.shape

最后的到的系数与测度如下:

LinearRegression(copy_X=True, fit_intercept=True, normalize=False)

2.81843904823

[ 0.04588771  0.18721008]

RMSE by hand: 1.28208957507

然后再次使用ROC曲线来观测曲线的整体情况。我们在将Newspaper这个特征移除之后,得到RMSE变小了,说明Newspaper特征可能不适合作为预测销量的特征,于是,我们得到了新的模型。我们还可以通过不同的特征组合得到新的模型,看看最终的误差是如何的。

备注:

之前我提到了这种错误:

注:上面的结果是由train_test_spilit()得到的,但是我不知道为什么我的版本的sklearn包中居然报错:

ImportError                               Traceback (most recent call last)ipython-input-182-3eee51fcba5a in module()      1 ###构造训练集和测试集---- 2 from sklearn.cross_validation import train_test_split      3 #import sklearn.cross_validation      4 X_train,X_test, y_train, y_test = train_test_split(X, y, random_state=1)      5 # default split is 75% for training and 25% for testingImportError: cannot import name train_test_split

处理方法:1、我后来重新安装sklearn包。再一次调用时就没有错误了。

2、自己写函数来认为的随机构造训练集和测试集。(这个代码我会在最后附上。)

这里我给出我自己写的函数:

怎么看python中逻辑回归输出的解释

以下为python代码,由于训练数据比较少,这边使用了批处理梯度下降法,没有使用增量梯度下降法。

##author:lijiayan##data:2016/10/27

##name:logReg.pyfrom numpy import *import matplotlib.pyplot as pltdef loadData(filename):

data = loadtxt(filename)

m,n = data.shape    print 'the number of  examples:',m    print 'the number of features:',n-1    x = data[:,0:n-1]

y = data[:,n-1:n]    return x,y#the sigmoid functiondef sigmoid(z):    return 1.0 / (1 + exp(-z))#the cost functiondef costfunction(y,h):

y = array(y)

h = array(h)

J = sum(y*log(h))+sum((1-y)*log(1-h))    return J# the batch gradient descent algrithmdef gradescent(x,y):

m,n = shape(x)     #m: number of training example; n: number of features    x = c_[ones(m),x]     #add x0    x = mat(x)      # to matrix    y = mat(y)

a = 0.0000025       # learning rate    maxcycle = 4000    theta = zeros((n+1,1))  #initial theta    J = []    for i in range(maxcycle):

h = sigmoid(x*theta)

theta = theta + a * (x.T)*(y-h)

cost = costfunction(y,h)

J.append(cost)

plt.plot(J)

plt.show()    return theta,cost#the stochastic gradient descent (m should be large,if you want the result is good)def stocGraddescent(x,y):

m,n = shape(x)     #m: number of training example; n: number of features    x = c_[ones(m),x]     #add x0    x = mat(x)      # to matrix    y = mat(y)

a = 0.01       # learning rate    theta = ones((n+1,1))    #initial theta    J = []    for i in range(m):

h = sigmoid(x[i]*theta)

theta = theta + a * x[i].transpose()*(y[i]-h)

cost = costfunction(y,h)

J.append(cost)

plt.plot(J)

plt.show()    return theta,cost#plot the decision boundarydef plotbestfit(x,y,theta):

plt.plot(x[:,0:1][where(y==1)],x[:,1:2][where(y==1)],'ro')

plt.plot(x[:,0:1][where(y!=1)],x[:,1:2][where(y!=1)],'bx')

x1= arange(-4,4,0.1)

x2 =(-float(theta[0])-float(theta[1])*x1) /float(theta[2])

plt.plot(x1,x2)

plt.xlabel('x1')

plt.ylabel(('x2'))

plt.show()def classifyVector(inX,theta):

prob = sigmoid((inX*theta).sum(1))    return where(prob = 0.5, 1, 0)def accuracy(x, y, theta):

m = shape(y)[0]

x = c_[ones(m),x]

y_p = classifyVector(x,theta)

accuracy = sum(y_p==y)/float(m)    return accuracy

调用上面代码:

from logReg import *

x,y = loadData("horseColicTraining.txt")

theta,cost = gradescent(x,y)print 'J:',cost

ac_train = accuracy(x, y, theta)print 'accuracy of the training examples:', ac_train

x_test,y_test = loadData('horseColicTest.txt')

ac_test = accuracy(x_test, y_test, theta)print 'accuracy of the test examples:', ac_test

学习速率=0.0000025,迭代次数=4000时的结果:

似然函数走势(J = sum(y*log(h))+sum((1-y)*log(1-h))),似然函数是求最大值,一般是要稳定了才算最好。

下图为计算结果,可以看到训练集的准确率为73%,测试集的准确率为78%。

这个时候,我去看了一下数据集,发现没个特征的数量级不一致,于是我想到要进行归一化处理:

归一化处理句修改列loadData(filename)函数:

def loadData(filename):

data = loadtxt(filename)

m,n = data.shape    print 'the number of  examples:',m    print 'the number of features:',n-1    x = data[:,0:n-1]

max = x.max(0)

min = x.min(0)

x = (x - min)/((max-min)*1.0)     #scaling    y = data[:,n-1:n]    return x,y

在没有归一化的时候,我的学习速率取了0.0000025(加大就会震荡,因为有些特征的值很大,学习速率取的稍大,波动就很大),由于学习速率小,迭代了4000次也没有完全稳定。现在当把特征归一化后(所有特征的值都在0~1之间),这样学习速率可以加大,迭代次数就可以大大减少,以下是学习速率=0.005,迭代次数=500的结果:

此时的训练集的准确率为72%,测试集的准确率为73%

从上面这个例子,我们可以看到对特征进行归一化操作的重要性。