您的位置:

c语言典型例程,c语言典型例程有哪些

本文目录一览:

C语言clock代码例程

#includereg51.h

#includevar.h

void sysinit(void);

void key(void);

void disp(void);

void time_inc(void);

void main(void)

{

sysinit(); //

while(1)

{

time_inc();

disp();

key();

}

}

void sysinit(void)

{

hour = 12;

min = 0;

sec = 0;

}

void time_inc(void)

{

static unsigned char cnt = 0;

if(++cnt 200)

{

return;

}

cnt = 0;

if(++sec = 60)

{

sec = 0;

if(++min = 60)

{

min = 0;

if(++hour = 24)

{

hour = 0;

}

}

}

disp_buf[0] = sec % 10;

disp_buf[1] = sec / 10;

disp_buf[2] = min % 10;

disp_buf[3] = min / 10;

disp_buf[4] = hour % 10;

disp_buf[5] = hour / 10;

}

void disp(void)

{

unsigned char code bit_code[6] = {7,6,5,4,3,2};

unsigned char code table[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};

unsigned char i,j;

for(i = 0; i 6; i++)

{

P2 = bit_code[i];

P0 = table[disp_buf[i]];

for(j = 0; j 250; j++);

}

}

void key(void)

{

}

C语言穷举法典型示例:湖泊大小问题

a,b,c,d得到的是逻辑运算结果0、1相加的结果。

a*b*c*d==1,实现:至少有一个说的是正确的。

C语言中有哪些实用的编程技巧

这篇文章主要介绍了C语言高效编程的几招小技巧,本文讲解了以空间换时间、用数学方法解决问题以及使用位操作等编辑技巧,并给出若干方法和代码实例,需要的朋友可以参考下

引言:

编写高效简洁的C语言代码,是许多软件工程师追求的目标。本文就工作中的一些体会和经验做相关的阐述,不对的地方请各位指教。

第1招:以空间换时间

计算机程序中最大的矛盾是空间和时间的矛盾,那么,从这个角度出发逆向思维来考虑程序的效率问题,我们就有了解决问题的第1招——以空间换时间。

例如:字符串的赋值。

方法A,通常的办法:

代码如下:

#define LEN 32

char string1 [LEN];

memset (string1,0,LEN);

strcpy (string1,“This is a example!!”);

方法B:

代码如下:

const char string2[LEN] =“This is a example!”;

char * cp;

cp = string2 ;

(使用的时候可以直接用指针来操作。)

从上面的例子可以看出,A和B的效率是不能比的。在同样的存储空间下,B直接使用指针就可以操作了,而A需要调用两个字符函数才能完成。B的缺点在于灵 活性没有A好。在需要频繁更改一个字符串内容的时候,A具有更好的灵活性;如果采用方法B,则需要预存许多字符串,虽然占用了大量的内存,但是获得了程序 执行的高效率。

如果系统的实时性要求很高,内存还有一些,那我推荐你使用该招数。

该招数的变招——使用宏函数而不是函数。举例如下:

方法C:

代码如下:

#define bwMCDR2_ADDRESS 4

#define bsMCDR2_ADDRESS 17

int BIT_MASK(int __bf)

{

return ((1U (bw ## __bf)) - 1) (bs ## __bf);

}

void SET_BITS(int __dst, int __bf, int __val)

{

__dst = ((__dst) ~(BIT_MASK(__bf))) | /

(((__val) (bs ## __bf)) (BIT_MASK(__bf))))

}

SET_BITS(MCDR2, MCDR2_ADDRESS, RegisterNumber);

方法D:

代码如下:

#define bwMCDR2_ADDRESS 4

#define bsMCDR2_ADDRESS 17

#define bmMCDR2_ADDRESS BIT_MASK(MCDR2_ADDRESS)

#define BIT_MASK(__bf) (((1U (bw ## __bf)) - 1) (bs ## __bf))

#define SET_BITS(__dst, __bf, __val) /

((__dst) = ((__dst) ~(BIT_MASK(__bf))) | /

(((__val) (bs ## __bf)) (BIT_MASK(__bf))))

SET_BITS(MCDR2, MCDR2_ADDRESS, RegisterNumber);

函数和宏函数的区别就在于,宏函数占用了大量的空间,而函数占用了时间。大家要知道的是,函数调用是要使用系统的栈来保存数据的,如果编译器里有栈检查 选项,一般在函数的头会嵌入一些汇编语句对当前栈进行检查;同时,CPU也要在函数调用时保存和恢复当前的现场,进行压栈和弹栈操作,所以,函数调用需要 一些CPU时间。而宏函数不存在这个问题。宏函数仅仅作为预先写好的代码嵌入到当前程序,不会产生函数调用,所以仅仅是占用了空间,在频繁调用同一个宏函 数的时候,该现象尤其突出。

D方法是我看到的最好的置位操作函数,是ARM公司源码的一部分,在短短的三行内实现了很多功能,几乎涵盖了所有的位操作功能。C方法是其变体,其中滋味还需大家仔细体会。

第2招:数学方法解决问题

现在我们演绎高效C语言编写的第二招——采用数学方法来解决问题。

数学是计算机之母,没有数学的依据和基础,就没有计算机的发展,所以在编写程序的时候,采用一些数学方法会对程序的执行效率有数量级的提高。

举例如下,求 1~100的和。

方法E

代码如下:

int I , j;

for (I = 1 ;I=100; I ++){

j += I;

}

方法F

代码如下:

int I;

I = (100 * (1+100)) / 2

这个例子是我印象最深的一个数学用例,是我的计算机启蒙老师考我的。当时我只有小学三年级,可惜我当时不知道用公式 N×(N+1)/ 2 来解决这个问题。方法E循环了100次才解决问题,也就是说最少用了100个赋值,100个判断,200个加法(I和j);而方法F仅仅用了1个加法,1 次乘法,1次除法。效果自然不言而喻。所以,现在我在编程序的时候,更多的是动脑筋找规律,最大限度地发挥数学的威力来提高程序运行的效率。

第3招:使用位操作

实现高效的C语言编写的第三招——使用位操作,减少除法和取模的运算。

在计算机程序中,数据的位是可以操作的最小数据单位,理论上可以用“位运算”来完成所有的运算和操作。一般的位操作是用来控制硬件的,或者做数据变换使用,但是,灵活的位操作可以有效地提高程序运行的效率。举例如下:

方法G

代码如下:

int I,J;

I = 257 /8;

J = 456 % 32;

方法H

int I,J;

I = 257 3;

J = 456 - (456 4 4);

在字面上好像H比G麻烦了好多,但是,仔细查看产生的汇编代码就会明白,方法G调用了基本的取模函数和除法函数,既有函数调用,还有很多汇编代码和寄存 器参与运算;而方法H则仅仅是几句相关的汇编,代码更简洁,效率更高。当然,由于编译器的不同,可能效率的差距不大,但是,以我目前遇到的MS C ,ARM C 来看,效率的差距还是不小。相关汇编代码就不在这里列举了。

运用这招需要注意的是,因为CPU的不同而产生的问题。比如说,在PC上用这招编写的程序,并在PC上调试通过,在移植到一个16位机平台上的时候,可能会产生代码隐患。所以只有在一定技术进阶的基础下才可以使用这招。

第4招:汇编嵌入

高效C语言编程的必杀技,第四招——嵌入汇编。

“在熟悉汇编语言的人眼里,C语言编写的程序都是垃圾”。这种说法虽然偏激了一些,但是却有它的道理。汇编语言是效率最高的计算机语言,但是,不可能靠着它来写一个操作系统吧?所以,为了获得程序的高效率,我们只好采用变通的方法 ——嵌入汇编,混合编程。

举例如下,将数组一赋值给数组二,要求每一字节都相符。

代码如下:

char string1[1024],string2[1024];

方法I

代码如下:

int I;

for (I =0 ;I1024;I++)

*(string2 + I) = *(string1 + I)

方法J

代码如下:

#ifdef _PC_

int I;

for (I =0 ;I1024;I++)

*(string2 + I) = *(string1 + I);

#else

#ifdef _ARM_

__asm

{

MOV R0,string1

MOV R1,string2

MOV R2,#0

loop:

LDMIA R0!, [R3-R11]

STMIA R1!, [R3-R11]

ADD R2,R2,#8

CMP R2, #400

BNE loop

}

#endif

方法I是最常见的方法,使用了1024次循环;方法J则根据平台不同做了区分,在ARM平台下,用嵌入汇编仅用128次循环就完成了同样的操作。这里有 朋友会说,为什么不用标准的内存拷贝函数呢?这是因为在源数据里可能含有数据为0的字节,这样的话,标准库函数会提前结束而不会完成我们要求的操作。这个 例程典型应用于LCD数据的拷贝过程。根据不同的CPU,熟练使用相应的嵌入汇编,可以大大提高程序执行的效率。

虽然是必杀技,但是如果轻易使用会付出惨重的代价。这是因为,使用了嵌入汇编,便限制了程序的可移植性,使程序在不同平台移植的过程中,卧虎藏龙,险象环生!同时该招数也与现代软件工程的思想相违背,只有在迫不得已的情况下才可以采用。切记,切记。

C语言最简单程序

简单易操作的程序如下:

输入几月几日,计算是2018年的第几天。

#include stdio.h

int main(int argc ,char * argv[]){

int month,day,days=0;

printf("输入月");

scanf("%d",month);

printf("输入日");

scanf("%d",day);

switch(month-1){

case 11:days+=30;

case 10:days+=31;

case 9:days+=30;

case 8:days+=31;

case 7:days+=31;

case 6:days+=30;

case 5:days+=31;

case 4:days+=30;

case 3:days+=31;

case 2:days+=29;

case 1:days+=31;

default:days+=day;break;

}

printf("这一天是2018年的第%d天\n",days);

return 0;

C的数据类型包括:整型、字符型、实型或浮点型(单精度和双精度)、枚举类型、数组类型、结构体类型、共用体类型、指针类型和空类型。

拓展资料:

C语言的运算非常灵活,功能十分丰富,运算种类远多于其它程序设计语言。在表达式方面较其它程序语言更为简洁,如自加、自减、逗号运算和三目运算使表达式更为简单,但初学者往往会觉的这种表达式难读,关键原因就是对运算符和运算顺序理解不透不全。

当多种不同运算组成一个运算表达式,即一个运算式中出现多种运算符时,运算的优先顺序和结合规则显得十分重要。在学习中,对此合理进行分类,找出它们与数学中所学到运算之间的不同点之后,记住这些运算也就不困难了,有些运算符在理解后更会牢记心中,将来用起来得心应手,而有些可暂时放弃不记,等用到时再记不迟。

C语言例程是什么

例程的作用类似于函数,但含义更为丰富一些。例程是某个系统对外提供的功能接口或服务的集合。比如操作系统的API、服务等就是例程;Delphi或C++Builder提供的标准函数和库函数等也是例程。我们编写一个DLL的时候,里面的输出函数就是这个DLL的例程。 可以这么简单地来理解:把一段相对独立的代码写成单独的一个模块就是函数的概念。我们可以在自己的程序中编写很多个函数,从而实现模块化编程。但这些模块或者说函数并不一定向外输出(即提供给别的程序使用),只用于当前这个程序里面。此时这些函数就仅仅具有独立函数的意义,但不是例程。

转百度百科

最简单的C语言代码

最简单的C语言代就是输出“helloWord”,通常是作为初学编程语言时的第一个程序代码。具体代码如下:

#include stdio.h

int main(){

  printf("Hello, World! \n");

  return 0;

}

扩展资料:

1、程序的第一行#include stdio.h是预处理器指令,告诉 C 编译器在实际编译之前要包含 stdio.h 文件。

2、下一行intmain()是主函数,程序从这里开始执行。

3、下一行printf(...)是C中另一个可用的函数,会在屏幕上显示消息"Hello,World!"。

4、下一行return0;终止main()函数,并返回值0。

参考资料来源:百度百科-c语言