您的位置:

python的升序排列,python升序排列怎么操作

本文目录一览:

python 中sort—values函数

一、sort_values()函数用途

pandas中的sort_values()函数原理类似于SQL中的order by,可以将数据集依照某个字段中的数据进行排序,该函数即可根据指定列数据也可根据指定行的数据排序。

二、sort_values()函数的具体参数

用法:

1DataFrame.sort_values(by=‘##',axis=0,ascending=True, inplace=False, na_position=‘last')

参数说明

by指定列名(axis=0或'index')或索引值(axis=1或'columns')

axis若axis=0或'index',则按照指定列中数据大小排序;若axis=1或'columns',则按照指定索引中数据大小排序,默认axis=0

ascending是否按指定列的数组升序排列,默认为True,即升序排列

inplace是否用排序后的数据集替换原来的数据,默认为False,即不替换

na_position{‘first',‘last'},设定缺失值的显示位置

三、sort_values用法举例

创建数据框

#利用字典dict创建数据框

import numpy as np

import pandas as pd

用python对10个数进行排序

sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')

by: 可以填入字符串或者字符串组成的列表。也就是说,如果axis=0,那么by="列名";如果axis=1,那么by="行名"。

axis: {0 or ‘index’, 1 or ‘columns’}, default 0,意思就是如果axis=0,就按照索引排序,即纵向排序;如果axis=1,则按列排序,即横向排序。默认是axis=0。

ascending: 输入布尔型,True是升序,False是降序,也可以可以是[True,False],即第一个字段升序,第二个字段降序 。

inplace: 输入布尔型,是否用排序后的数据框替换现有的数据框(这个在之前的文章写过很多次了~)

kind: 排序的方法,{‘quicksort’, ‘mergesort’, ‘heapsort’},默认是使用‘quicksort’。这个参数用的比较少,大家可以试一试。

na_position : {‘first’, ‘last’},缺失值的排序,也就说决定将缺失值放在数据的最前面还是最后面。first是排在前面,last是排在后面,默认是用last。

创建数据表:

scores= pd.DataFrame([[87,56,85],[46,87,97],[34,65,86]],

     columns=['jack', 'rose', 'mike'])

scores

‘rose’这一列进行降序排序:

df_sc=scores.sort_values(by='rose',ascending=False)

df_sc

‘mike’这一列进行升序排序:

df_sc=scores.sort_values(by='mike',ascending=True)

df_sc

对第0行进行升序排序:

scores.sort_values(by=0,axis=1,ascending=True)

我们再尝试对第1行进行升序,第0行进行降序:

scores.sort_values(by=[1,0],axis=1,ascending=[True,False]

深入理解python中的排序sort

进行一个简单的升序排列直接调用sorted()函数,函数将会返回一个排序后的列表:

sorted函数不会改变原有的list,而是返回一个新的排好序的list

如果你想使用就地排序,也就是改变原list的内容,那么可以使用list.sort()的方法,这个方法的返回值是None。

另一个区别是,list.sort()方法只是list也就是列表类型的方法,只可以在列表类型上调用。而sorted方法则是可以接受任何可迭代对象。

list.sort()和sorted()函数都有一个key参数,可以用来指定一个函数来确定排序的一个优先级。比如,这个例子就是根据大小写的优先级进行排序:

key参数的值应该是一个函数,这个函数接受一个参数然后返回以一个key,这个key就被用作进行排序。这个方法很高效,因为对于每一个输入的记录只需要调用一次key函数。

一个常用的场景就是当我们需要对一个复杂对象的某些属性进行排序时:

再如:

前面我们看到的利用key-function来自定义排序,同时Python也可以通过operator库来自定义排序,而且通常这种方法更好理解并且效率更高。

operator库提供了 itemgetter(), attrgetter(), and a methodcaller()三个函数

同时还支持多层排序

list.sort()和sorted()都有一个boolean类型的reverse参数,可以用来指定升序和降序排列,默认为false,也就是升序排序,如果需要降序排列,则需将reverse参数指定为true。

排序的稳定性指,有相同key值的多个记录进行排序之后,原始的前后关系保持不变

我们可以看到python中的排序是稳定的。

我们可以利用这个稳定的特性来进行一些复杂的排序步骤,比如,我们将学生的数据先按成绩降序然后年龄升序。当排序是稳定的时候,我们可以先将年龄升序,再将成绩降序会得到相同的结果。

传统的DSU(Decorate-Sort-Undecorate)的排序方法主要有三个步骤:

因为元组是按字典序比较的,比较完grade之后,会继续比较i。

添加index的i值不是必须的,但是添加i值有以下好处:

现在python3提供了key-function,所以DSU方法已经不常用了

python2.x版本中,是利用cmp参数自定义排序。

python3.x已经将这个方法移除了,但是我们还是有必要了解一下cmp参数

cmp参数的使用方法就是指定一个函数,自定义排序的规则,和java等其他语言很类似

也可以反序排列

python3.x中可以用如下方式: