本文目录一览:
- 1、图像处理的Python问题,怎么解决
- 2、PYTHON实现对CSV文件多维不同单位数据的归一化处理
- 3、OpenCV Python 系列教程4 - OpenCV 图像处理(上)
- 4、python怎么做均值方差归一化
- 5、线性归一化
- 6、在python上数据归一化后怎样还原
图像处理的Python问题,怎么解决
imtools.py里面也要有numpy 的引用才对
def histeq(im,nbr_bins=256):
"""对一幅灰度图像进行直方图均衡化"""
#计算图像的直方图
imhist,bins = histogram(im.flatten(),nbr_bins,normed=True)
cdf = imhist.cumsum() #累计分布函数
cdf = 255 * cdf / cdf[-1] #归一化
#使用累计分布函数的线性插值,计算新的像素
im2 = interp(im.flatten(),bins[:-1],cdf)
return im2.reshape(im.shape),cdf
以上代码我定义在imtools.py文件里并且放在了python2.7里
然后我在num.py里引用他
Python code?
1
2
3
4
5
6
7
8
9
10
from PIL import Image
from pylab import *
from numpy import *
import imtools
im= array(Image.open('E:\\daima\\pydaima\\shijue\\tupian1\\gang2.jpg').convert('L'))
im2,cdf =imtools.histeq(im)
出现以下错误:
Traceback (most recent call last):
File "pyshell#56", line 1, in module
a=imtools.histeq(im)
File "E:\daima\pydaima\shijue\imtools.py", line 32, in histeq
NameError: global name 'histogram' is not defined
PYTHON实现对CSV文件多维不同单位数据的归一化处理
1)线性归一化
这种归一化比较适用在数值比较集中的情况,缺陷就是如果max和min不稳定,很容易使得归一化结果不稳定,使得后续的效果不稳定,实际使用中可以用经验常量来代替max和min。
2)标准差标准化
经过处理的数据符合标准正态分布,即均值为0,标准差为1。
3)非线性归一化
经常用在数据分化较大的场景,有些数值大,有些很小。通过一些数学函数,将原始值进行映射。该方法包括log、指数、反正切等。需要根据数据分布的情况,决定非线性函数的曲线。
log函数:x = lg(x)/lg(max)
反正切函数:x = atan(x)*2/pi
Python实现
线性归一化
定义数组:x = numpy.array(x)
获取二维数组列方向的最大值:x.max(axis = 0)
获取二维数组列方向的最小值:x.min(axis = 0)
对二维数组进行线性归一化:
def max_min_normalization(data_value, data_col_max_values, data_col_min_values):
""" Data normalization using max value and min value
Args:
data_value: The data to be normalized
data_col_max_values: The maximum value of data's columns
data_col_min_values: The minimum value of data's columns
"""
data_shape = data_value.shape
data_rows = data_shape[0]
data_cols = data_shape[1]
for i in xrange(0, data_rows, 1):
for j in xrange(0, data_cols, 1):
data_value[i][j] = \
(data_value[i][j] - data_col_min_values[j]) / \
(data_col_max_values[j] - data_col_min_values[j])
标准差归一化
定义数组:x = numpy.array(x)
获取二维数组列方向的均值:x.mean(axis = 0)
获取二维数组列方向的标准差:x.std(axis = 0)
对二维数组进行标准差归一化:
def standard_deviation_normalization(data_value, data_col_means,
data_col_standard_deviation):
""" Data normalization using standard deviation
Args:
data_value: The data to be normalized
data_col_means: The means of data's columns
data_col_standard_deviation: The variance of data's columns
"""
data_shape = data_value.shape
data_rows = data_shape[0]
data_cols = data_shape[1]
for i in xrange(0, data_rows, 1):
for j in xrange(0, data_cols, 1):
data_value[i][j] = \
(data_value[i][j] - data_col_means[j]) / \
data_col_standard_deviation[j]
非线性归一化(以lg为例)
定义数组:x = numpy.array(x)
获取二维数组列方向的最大值:x.max(axis=0)
获取二维数组每个元素的lg值:numpy.log10(x)
获取二维数组列方向的最大值的lg值:numpy.log10(x.max(axis=0))
对二维数组使用lg进行非线性归一化:
def nonlinearity_normalization_lg(data_value_after_lg,
data_col_max_values_after_lg):
""" Data normalization using lg
Args:
data_value_after_lg: The data to be normalized
data_col_max_values_after_lg: The maximum value of data's columns
"""
data_shape = data_value_after_lg.shape
data_rows = data_shape[0]
data_cols = data_shape[1]
for i in xrange(0, data_rows, 1):
for j in xrange(0, data_cols, 1):
data_value_after_lg[i][j] = \
data_value_after_lg[i][j] / data_col_max_values_after_lg[j]
OpenCV Python 系列教程4 - OpenCV 图像处理(上)
学习目标:
OpenCV 中有 150 多种色彩空间转化的方法,这里只讨论两种:
HSV的色相范围为[0,179],饱和度范围为[0,255],值范围为[0,255]。不同的软件使用不同的规模。如果要比较 OpenCV 值和它们,你需要标准化这些范围。
HSV 和 HLV 解释
运行结果:该段程序的作用是检测蓝色目标,同理可以检测其他颜色的目标
结果中存在一定的噪音,之后的章节将会去掉它
这是物体跟踪中最简单的方法。一旦你学会了等高线的函数,你可以做很多事情,比如找到这个物体的质心,用它来跟踪这个物体,仅仅通过在相机前移动你的手来画图表,还有很多其他有趣的事情。
菜鸟教程 在线 HSV- BGR 转换
比如要找出绿色的 HSV 值,可以使用上面的程序,得到的值取一个上下界。如上面的取下界 [H-10, 100, 100],上界 [H+10, 255, 255]
或者使用其他工具如 GIMP
学习目标:
对图像进行阈值处理,算是一种最简单的图像分割方法,基于图像与背景之间的灰度差异,此项分割是基于像素级的分割
threshold(src, thresh, maxval, type[, dst]) - retval, dst
计算图像小区域的阈值。所以我们对同一幅图像的不同区域得到不同的阈值,这给我们在不同光照下的图像提供了更好的结果。
三个特殊的输入参数和一个输出参数
adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) - dst
opencv-threshold-python
OpenCV 图片集
本节原文
学习目标:
OpenCV 提供两种变换函数: cv2.warpAffine 和 cv2.warpPerspective
cv2.resize() 完成缩放
文档说明
运行结果
说明 : cv2.INTER_LINEAR 方法比 cv2.INTER_CUBIC 还慢,好像与官方文档说的不一致? 有待验证。
速度比较: INTER_CUBIC INTER_NEAREST INTER_LINEAR INTER_AREA INTER_LANCZOS4
改变图像的位置,创建一个 np.float32 类型的变换矩阵,
warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) - dst
运行结果:
旋转角度( )是通过一个变换矩阵变换的:
OpenCV 提供的是可调旋转中心的缩放旋转,这样你可以在任何你喜欢的位置旋转。修正后的变换矩阵为
这里
OpenCV 提供了 cv2.getRotationMatrix2D 控制
cv2.getRotationMatrix2D(center, angle, scale) → retval
运行结果
cv2.getAffineTransform(src, dst) → retval
函数关系:
\begin{bmatrix} x'_i \ y'_i \end{bmatrix}\begin{bmatrix} x'_i \ y'_i \end{bmatrix} =
其中
运行结果:图上的点便于观察,两图中的红点是相互对应的
透视变换需要一个 3x3 变换矩阵。转换之后直线仍然保持笔直,要找到这个变换矩阵,需要输入图像上的 4 个点和输出图像上的对应点。在这 4 个点中,有 3 个不应该共线。通过 cv2.getPerspectiveTransform 计算得到变换矩阵,得到的矩阵 cv2.warpPerspective 变换得到最终结果。
本节原文
平滑处理(smoothing)也称模糊处理(bluring),是一种简单且使用频率很高的图像处理方法。平滑处理的用途:常见是用来 减少图像上的噪点或失真 。在涉及到降低图像分辨率时,平滑处理是很好用的方法。
图像滤波:尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。
消除图像中的噪声成分叫做图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段,在高频段,有用的信息会被噪声淹没。因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响。
滤波的目的:抽出对象的特征作为图像识别的特征模式;为适应图像处理的要求,消除图像数字化时混入的噪声。
滤波处理的要求:不能损坏图像的轮廓及边缘等重要信息;图像清晰视觉效果好。
平滑滤波是低频增强的空间滤波技术,目的:模糊和消除噪音。
空间域的平滑滤波一般采用简单平均法,即求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑效果越好,但是邻域过大,平滑也会使边缘信息的损失的越大,从而使输出图像变得模糊。因此需要选择合适的邻域。
滤波器:一个包含加权系数的窗口,利用滤波器平滑处理图像时,把这个窗口放在图像上,透过这个窗口来看我们得到的图像。
线性滤波器:用于剔除输入信号中不想要的频率或者从许多频率中选择一个想要的频率。
低通滤波器、高通滤波器、带通滤波器、带阻滤波器、全通滤波器、陷波滤波器
boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) - dst
均值滤波是方框滤波归一化后的特殊情况。归一化就是要把处理的量缩放到一个范围内如 (0,1),以便统一处理和直观量化。非归一化的方框滤波用于计算每个像素邻近内的积分特性,比如密集光流算法中用到的图像倒数的协方差矩阵。
运行结果:
均值滤波是典型的线性滤波算法,主要方法为邻域平均法,即用一片图像区域的各个像素的均值来代替原图像中的各个像素值。一般需要在图像上对目标像素给出一个模板(内核),该模板包括了其周围的临近像素(比如以目标像素为中心的周围8(3x3-1)个像素,构成一个滤波模板,即 去掉目标像素本身 )。再用模板中的全体像素的平均值来代替原来像素值。即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度个g(x,y),即个g(x,y)=1/m ∑f(x,y) ,其中m为该模板中包含当前像素在内的像素总个数。
均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。
cv2.blur(src, ksize[, dst[, anchor[, borderType]]]) → dst
结果:
高斯滤波:线性滤波,可以消除高斯噪声,广泛应用于图像处理的减噪过程。高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过 加权平均 后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。
高斯滤波有用但是效率不高。
高斯模糊技术生成的图像,其视觉效果就像是经过一个半透明屏幕在观察图像,这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同。高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果(参见尺度空间表示以及尺度空间实现)。从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积。由于正态分布又叫作高斯分布,所以这项技术就叫作高斯模糊。
高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。 高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。
一维零均值高斯函数为: 高斯分布参数 决定了高斯函数的宽度。
高斯噪声的产生
GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) - dst
线性滤波容易构造,并且易于从频率响应的角度来进行分析。
许多情况,使用近邻像素的非线性滤波会得到更好的结果。比如在噪声是散粒噪声而不是高斯噪声,即图像偶尔会出现很大值的时候,用高斯滤波器进行图像模糊时,噪声像素不会被消除,而是转化为更为柔和但仍然可见的散粒。
中值滤波(Median filter)是一种典型的非线性滤波技术,基本思想是用像素点邻域灰度值的中值来代替该像素点的灰度值,该方法在去除脉冲噪声、椒盐噪声『椒盐噪声又称脉冲噪声,它随机改变一些像素值,是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。椒盐噪声往往由图像切割引起。』的同时又能保留图像边缘细节,
中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,其基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点,对于 斑点噪声(speckle noise)和椒盐噪声(salt-and-pepper noise) 来说尤其有用,因为它不依赖于邻域内那些与典型值差别很大的值。中值滤波器在处理连续图像窗函数时与线性滤波器的工作方式类似,但滤波过程却不再是加权运算。
中值滤波在一定的条件下可以克服常见线性滤波器如最小均方滤波、方框滤波器、均值滤波等带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声非常有效,也常用于保护边缘信息, 保存边缘的特性使它在不希望出现边缘模糊的场合也很有用,是非常经典的平滑噪声处理方法。
与均值滤波比较:
说明:中值滤波在一定条件下,可以克服线性滤波器(如均值滤波等)所带来的图像细节模糊,而且对滤除脉冲干扰即图像扫描噪声最为有效。在实际运算过程中并不需要图像的统计特性,也给计算带来不少方便。 但是对一些细节多,特别是线、尖顶等细节多的图像不宜采用中值滤波。
双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合 图像的空间邻近度和像素值相似度 的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。
双边滤波器的好处是可以做边缘保存(edge preserving),一般过去用的维纳滤波或者高斯滤波去降噪,都会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波器顾名思义比高斯滤波多了一个高斯方差 sigma-d ,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。 但是由于保存了过多的高频信息,对于彩色图像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤波。
运行结果
学习目标:
形态变换是基于图像形状的一些简单操作。它通常在二进制图像上执行。
膨胀与腐蚀实现的功能
侵蚀的基本思想就像土壤侵蚀一样,它会侵蚀前景物体的边界(总是试图保持前景为白色)。那它是做什么的?内核在图像中滑动(如在2D卷积中)。只有当内核下的所有像素都是 1 时,原始图像中的像素( 1 或 0 )才会被视为 1 ,否则它将被侵蚀(变为零)
erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) - dst
与腐蚀的操作相反。如果内核下的至少一个像素为“1”,则像素元素为“1”。因此它增加了图像中的白色区域或前景对象的大小增加。通常,在去除噪音的情况下,侵蚀之后是扩张。因为,侵蚀会消除白噪声,但它也会缩小我们的物体。所以我们扩大它。由于噪音消失了,它们不会再回来,但我们的物体区域会增加。它也可用于连接对象的破碎部分
python怎么做均值方差归一化
可以用线性归一化,就是找到最大值和最小值。
平均数是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
线性归一化
线性归一化是图像处理中的专业术语,意思是将图像进行等比例的扩大和缩小,还有一种是非线性归一化,具体操作方法是根据图像的实际结构进行扩大和缩小。
在python上数据归一化后怎样还原
数据归一化方法有两种形式,一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式。1、把数变为(0,1)之间的小数主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。2、是把有量纲表达式变为无量纲表达式归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。