您的位置:

java算法,java算法工程师

本文目录一览:

java最常用的几种加密算法

简单的Java加密算法有:

第一种. BASE

Base是网络上最常见的用于传输Bit字节代码的编码方式之一,大家可以查看RFC~RFC,上面有MIME的详细规范。Base编码可用于在HTTP环境下传递较长的标识信息。例如,在Java Persistence系统Hibernate中,就采用了Base来将一个较长的唯一标识符(一般为-bit的UUID)编码为一个字符串,用作HTTP表单和HTTP GET URL中的参数。在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单域)中的形式。此时,采用Base编码具有不可读性,即所编码的数据不会被人用肉眼所直接看到。

第二种. MD

MD即Message-Digest Algorithm (信息-摘要算法),用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一(又译摘要算法、哈希算法),主流编程语言普遍已有MD实现。将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD的前身有MD、MD和MD。

MD算法具有以下特点:

压缩性:任意长度的数据,算出的MD值长度都是固定的。

容易计算:从原数据计算出MD值很容易。

抗修改性:对原数据进行任何改动,哪怕只修改个字节,所得到的MD值都有很大区别。

弱抗碰撞:已知原数据和其MD值,想找到一个具有相同MD值的数据(即伪造数据)是非常困难的。

强抗碰撞:想找到两个不同的数据,使它们具有相同的MD值,是非常困难的。

MD的作用是让大容量信息在用数字签名软件签署私人密钥前被”压缩”成一种保密的格式(就是把一个任意长度的字节串变换成一定长的十六进制数字串)。除了MD以外,其中比较有名的还有sha-、RIPEMD以及Haval等。

第三种.SHA

安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于^位的消息,SHA会产生一个位的消息摘要。该算法经过加密专家多年来的发展和改进已日益完善,并被广泛使用。该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。散列函数值可以说是对明文的一种“指纹”或是“摘要”所以对散列值的数字签名就可以视为对此明文的数字签名。

SHA-与MD的比较

因为二者均由MD导出,SHA-和MD彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:

对强行攻击的安全性:最显著和最重要的区别是SHA-摘要比MD摘要长 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD是^数量级的操作,而对SHA-则是^数量级的操作。这样,SHA-对强行攻击有更大的强度。

对密码分析的安全性:由于MD的设计,易受密码分析的攻击,SHA-显得不易受这样的攻击。

速度:在相同的硬件上,SHA-的运行速度比MD慢。

第四种.HMAC

HMAC(Hash Message Authentication Code,散列消息鉴别码,基于密钥的Hash算法的认证协议。消息鉴别码实现鉴别的原理是,用公开函数和密钥产生一个固定长度的值作为认证标识,用这个标识鉴别消息的完整性。使用一个密钥生成一个固定大小的小数据块,即MAC,并将其加入到消息中,然后传输。接收方利用与发送方共享的密钥进行鉴别认证等。

java数字图像处理常用算法

     前些时候做毕业设计 用java做的数字图像处理方面的东西 这方面的资料ms比较少 发点东西上来大家共享一下 主要就是些算法 有自己写的 有人家的 还有改人家的 有的算法写的不好 大家不要见笑

一 读取bmp图片数据

//  获取待检测图像  数据保存在数组 nData[] nB[]  nG[]  nR[]中

public  void getBMPImage(String source) throws Exception {                    clearNData();                        //清除数据保存区         FileInputStream fs = null;               try {            fs = new FileInputStream(source);            int bfLen = ;            byte bf[] = new byte[bfLen];            fs read(bf bfLen); // 读取 字节BMP文件头            int biLen = ;            byte bi[] = new byte[biLen];            fs read(bi biLen); // 读取 字节BMP信息头

// 源图宽度            nWidth = (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) ) | (int) bi[ ] xff;

// 源图高度            nHeight = (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) ) | (int) bi[ ] xff;

// 位数            nBitCount = (((int) bi[ ] xff) ) | (int) bi[ ] xff;

// 源图大小            int nSizeImage = (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) ) | (int) bi[ ] xff;

// 对 位BMP进行解析            if (nBitCount == ){                int nPad = (nSizeImage / nHeight) nWidth * ;                nData = new int[nHeight * nWidth];                nB=new int[nHeight * nWidth];                nR=new int[nHeight * nWidth];                nG=new int[nHeight * nWidth];                byte bRGB[] = new byte[(nWidth + nPad) * * nHeight];                fs read(bRGB (nWidth + nPad) * * nHeight);                int nIndex = ;                for (int j = ; j nHeight; j++){                    for (int i = ; i nWidth; i++) {                        nData[nWidth * (nHeight j ) + i] = ( xff)                                 | (((int) bRGB[nIndex + ] xff) )                                 | (((int) bRGB[nIndex + ] xff) )                                | (int) bRGB[nIndex] xff;                                              nB[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex] xff;                        nG[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ] xff;                        nR[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ] xff;                        nIndex += ;                    }                    nIndex += nPad;                } //               Toolkit kit = Toolkit getDefaultToolkit(); //               image = kit createImage(new MemoryImageSource(nWidth nHeight  //                       nData nWidth));

/*               //调试数据的读取

FileWriter fw = new FileWriter( C:\\Documents and Settings\\Administrator\\My Documents\\nDataRaw txt );//创建新文件                PrintWriter out = new PrintWriter(fw);                for(int j= ;jnHeight;j++){                 for(int i= ;inWidth;i++){                  out print(( * +nData[nWidth * (nHeight j ) + i])+ _                     +nR[nWidth * (nHeight j ) + i]+ _                     +nG[nWidth * (nHeight j ) + i]+ _                     +nB[nWidth * (nHeight j ) + i]+ );                                   }                 out println( );                }                out close();*/                      }        }        catch (Exception e) {            e printStackTrace();            throw new Exception(e);        }         finally {            if (fs != null) {                fs close();            }        }     //   return image;    }

二 由r g b 获取灰度数组

    public  int[] getBrightnessData(int rData[] int gData[] int bData[]){          int brightnessData[]=new int[rData length];     if(rData length!=gData length || rData length!=bData length       || bData length!=gData length){      return brightnessData;     }     else {      for(int i= ;ibData length;i++){       double temp= *rData[i]+ *gData[i]+ *bData[i];       brightnessData[i]=(int)(temp)+((temp (int)(temp)) ? : );      }      return brightnessData;     }          } 

三 直方图均衡化

    public int [] equilibrateGray(int[] PixelsGray int width int height)     {                  int gray;         int length=PixelsGray length;         int FrequenceGray[]=new int[length];          int SumGray[]=new int[ ];          int ImageDestination[]=new int[length];         for(int i = ; i length ;i++)         {            gray=PixelsGray[i];               FrequenceGray[gray]++;         }           //    灰度均衡化          SumGray[ ]=FrequenceGray[ ];          for(int i= ;i ;i++){               SumGray[i]=SumGray[i ]+FrequenceGray[i];           }         for(int i= ;i ;i++) {               SumGray[i]=(int)(SumGray[i]* /length);           }         for(int i= ;iheight;i++)          {                for(int j= ;jwidth;j++)               {                   int k=i*width+j;                   ImageDestination[k]= xFF | ((SumGray[PixelsGray[k]]                             ) | (SumGray[PixelsGray[k]] ) | SumGray[PixelsGray[k]]);                }           }         return ImageDestination;      } 

四 laplace 阶滤波 增强边缘 图像锐化

    public int[] laplace DFileter(int []data int width int height){         int filterData[]=new int[data length];     int min= ;     int max= ;     for(int i= ;iheight;i++){      for(int j= ;jwidth;j++){       if(i== || i==height || j== || j==width )               filterData[i*width+j]=data[i*width+j];       else        filterData[i*width+j]= *data[i*width+j] data[i*width+j ] data[i*width+j+ ]                             data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ]                             data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ];              if(filterData[i*width+j]min)        min=filterData[i*width+j];       if(filterData[i*width+j]max)        max=filterData[i*width+j];      }       }//     System out println( max: +max);//     System out println( min: +min);          for(int i= ;iwidth*height;i++){      filterData[i]=(filterData[i] min)* /(max min);     }     return filterData;    } 

五 laplace 阶增强滤波 增强边缘 增强系数delt

    public int[] laplaceHigh DFileter(int []data int width int height double delt){          int filterData[]=new int[data length];     int min= ;     int max= ;     for(int i= ;iheight;i++){      for(int j= ;jwidth;j++){       if(i== || i==height || j== || j==width )               filterData[i*width+j]=(int)(( +delt)*data[i*width+j]);       else        filterData[i*width+j]=(int)(( +delt)*data[i*width+j] data[i*width+j ]) data[i*width+j+ ]                             data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ]                             data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ];              if(filterData[i*width+j]min)        min=filterData[i*width+j];       if(filterData[i*width+j]max)        max=filterData[i*width+j];      }       }     for(int i= ;iwidth*height;i++){      filterData[i]=(filterData[i] min)* /(max min);     }     return filterData;    }  六 局部阈值处理 值化

    //   局部阈值处理 值化 niblack s   method    /*原理             T(x y)=m(x y)   +   k*s(x y)            取一个宽度为w的矩形框 (x y)为这个框的中心          统计框内数据 T(x y)为阈值 m(x y)为均值 s(x y)为均方差 k为参数(推荐 )计算出t再对(x y)进行切割 /             这个算法的优点是     速度快 效果好             缺点是     niblack s   method会产生一定的噪声        */        public int[] localThresholdProcess(int []data int width int height int w int h double coefficients double gate){     int[] processData=new int[data length];     for(int i= ;idata length;i++){      processData[i]= ;     }          if(data length!=width*height)      return processData;          int wNum=width/w;     int hNum=height/h;     int delt[]=new int[w*h];          //System out println( w; +w+   h: +h+   wNum: +wNum+ hNum: +hNum);          for(int j= ;jhNum;j++){      for(int i= ;iwNum;i++){     //for(int j= ;j ;j++){     // for(int i= ;i ;i++){         for(int n= ;nh;n++)               for(int k= ;kw;k++){                delt[n*w+k]=data[(j*h+n)*width+i*w+k];                //System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ );               }        //System out println();        /*        for(int n= ;nh;n++)               for(int k= ;kw;k++){                System out print( data[ +((j*h+n)*width+i*w+k)+ ]: +data[(j*h+n)*width+i*w+k]+ );               }        System out println();        */        delt=thresholdProcess(delt w h coefficients gate);        for(int n= ;nh;n++)               for(int k= ;kw;k++){                processData[(j*h+n)*width+i*w+k]=delt[n*w+k];               // System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ );               }        //System out println();        /*        for(int n= ;nh;n++)               for(int k= ;kw;k++){                System out print( processData[ +((j*h+n)*width+i*w+k)+ ]: +processData[(j*h+n)*width+i*w+k]+ );               }        System out println();        */      }      }          return processData;    } 

七 全局阈值处理 值化

    public int[] thresholdProcess(int []data int width int height double coefficients double gate){     int [] processData=new int[data length];     if(data length!=width*height)      return processData;     else{      double sum= ;      double average= ;      double variance= ;      double threshold;            if( gate!= ){       threshold=gate;       }      else{            for(int i= ;iwidth*height;i++){            sum+=data[i];            }            average=sum/(width*height);                  for(int i= ;iwidth*height;i++){              variance+=(data[i] average)*(data[i] average);            }            variance=Math sqrt(variance);            threshold=average coefficients*variance;      }               for(int i= ;iwidth*height;i++){          if(data[i]threshold)             processData[i]= ;          else                 processData[i]= ;         }               return processData;       }    } 

八  垂直边缘检测 sobel算子

    public int[] verticleEdgeCheck(int []data int width int height int sobelCoefficients) throws Exception{     int filterData[]=new int[data length];     int min= ;     int max= ;     if(data length!=width*height)      return filterData;          try{            for(int i= ;iheight;i++){       for(int j= ;jwidth;j++){        if(i== || i== || i==height || i==height            ||j== || j== || j==width || j==width ){               filterData[i*width+j]=data[i*width+j];         }         else{          double average;            //中心的九个像素点             //average=data[i*width+j] Math sqrt( )*data[i*width+j ]+Math sqrt( )*data[i*width+j+ ]          average=data[i*width+j] sobelCoefficients*data[i*width+j ]+sobelCoefficients*data[i*width+j+ ]                         data[(i )*width+j ]+data[(i )*width+j+ ]                     data[(i+ )*width+j ]+data[(i+ )*width+j+ ];             filterData[i*width+j]=(int)(average);         }               if(filterData[i*width+j]min)         min=filterData[i*width+j];         if(filterData[i*width+j]max)         max=filterData[i*width+j];        }        }       for(int i= ;iwidth*height;i++){        filterData[i]=(filterData[i] min)* /(max min);         }          }     catch (Exception e)      {            e printStackTrace();            throw new Exception(e);        }            return filterData;    } 

九  图像平滑 * 掩模处理(平均处理) 降低噪声

lishixinzhi/Article/program/Java/hx/201311/26286

Java的排序算法有哪些

java的排序大的分类可以分为两种:内排序和外排序。在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序。下面讲的排序都是属于内排序。

1.插入排序:直接插入排序、二分法插入排序、希尔排序。

2.选择排序:简单选择排序、堆排序。

3.交换排序:冒泡排序、快速排序。

4.归并排序

5.基数排序

java中的算法,一共有多少种,哪几种,怎么分类。

就好比问,汉语中常用写作方法有多少种,怎么分类。

算法按用途分,体现设计目的、有什么特点

算法按实现方式分,有递归、迭代、平行、序列、过程、确定、不确定等等

算法按设计范型分,有分治、动态、贪心、线性、图论、简化等等

作为图灵完备的语言,理论上”Java语言“可以实现所有算法。

“Java的标准库'中用了一些常用数据结构和相关算法.

像apache common这样的java库中又提供了一些通用的算法

java迭代算法和迭代器的区别

形式不同。

java迭代算法是一种不断用变量的旧值递推出新值的解决问题的方法;java迭代器是程序设计的软件设计模式。

java迭代器可在容器对象(container,例如链表或数组)上遍访的接口,设计人员无需关心容器对象的内存分配的实现细节。

为什么java面试算法特别多

因为算法是比较基础又复杂的学科。

这就是没理解这道题考察的意图,不是考察你javaAPI的使用,而是看看你的思维和代码编程能力。开发工程师的主要工作就是处理各种逻辑。比如给你一个真实的工作需求,让你把一个数据作排序,但是相同的数只保留两个,或者给一个字符串按第个字母进行排序。只会使用API或者粘贴复制是远远不够的,而排序算法是逻辑最直接的,最好表达,也是行数较少的思维考查,所以笔试面试里见面的次数就比较多。

Java是一门面向对象的编程语言,不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承、指针等概念,因此Java语言具有功能强大和简单易用两个特征。Java语言作为静态面向对象编程语言的代表,极好地实现了面向对象理论,允许程序员以优雅的思维方式进行复杂的编程。