您的位置:

python人脸模型重建(人脸自动建模)

本文目录一览:

有一张人脸的侧脸图像,如何用python及相关的库来计算人脸转过的角度。

这个很难办到,不过可以通过判断关键点的特点进行判断,但是准确率不高

前言

很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。

一点区分

对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,人脸检测解决的问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。可以说人脸检测是是人识别的前期工作。今天我们要做的是人脸识别。

所用工具

Anaconda 2——Python 2

Dlib

scikit-image

Dlib

对于今天要用到的主要工具,还是有必要多说几句的。Dlib是基于现代C++的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib的文档非常完善,例子非常丰富。就像很多库一样,Dlib也提供了Python的接口,安装非常简单,用pip只需要一句即可:

pip install dlib

上面需要用到的scikit-image同样只是需要这么一句:

pip install scikit-image

注:如果用pip install dlib安装失败的话,那安装起来就比较麻烦了。错误提示很详细,按照错误提示一步步走就行了。

人脸识别

之所以用Dlib来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。今天我们主要目的是实现,而不是深究原理。感兴趣的同学可以到官网查看源码以及实现的参考文献。今天的例子既然代码不超过40行,其实是没啥难度的。有难度的东西都在源码和论文里。

首先先通过文件树看一下今天需要用到的东西:

准备了六个候选人的图片放在candidate-faces文件夹中,然后需要识别的人脸图片test.jpg。我们的工作就是要检测到test.jpg中的人脸,然后判断她到底是候选人中的谁。另外的girl-face-rec.py是我们的python脚本。shape_predictor_68_face_landmarks.dat是已经训练好的人脸关键点检测器。dlib_face_recognition_resnet_model_v1.dat是训练好的ResNet人脸识别模型。ResNet是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 2015 冠军,通过让网络对残差进行学习,在深度和精度上做到了比

CNN 更加强大。

1. 前期准备

shape_predictor_68_face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat都可以在这里找到。

然后准备几个人的人脸图片作为候选人脸,最好是正脸。放到candidate-faces文件夹中。

本文这里准备的是六张图片,如下:

她们分别是

然后准备四张需要识别的人脸图像,其实一张就够了,这里只是要看看不同的情况:

可以看到前两张和候选文件中的本人看起来还是差别不小的,第三张是候选人中的原图,第四张图片微微侧脸,而且右侧有阴影。

2.识别流程

数据准备完毕,接下来就是代码了。识别的大致流程是这样的:

3.代码

代码不做过多解释,因为已经注释的非常完善了。以下是girl-face-rec.py

# -*- coding: UTF-8 -*-

import sys,os,dlib,glob,numpy

from skimage import io

if len(sys.argv) != 5:

print "请检查参数是否正确"

exit()

# 1.人脸关键点检测器

predictor_path = sys.argv[1]

# 2.人脸识别模型

face_rec_model_path = sys.argv[2]

# 3.候选人脸文件夹

faces_folder_path = sys.argv[3]

# 4.需识别的人脸

img_path = sys.argv[4]

# 1.加载正脸检测器

detector = dlib.get_frontal_face_detector()

# 2.加载人脸关键点检测器

sp = dlib.shape_predictor(predictor_path)

# 3. 加载人脸识别模型

facerec = dlib.face_recognition_model_v1(face_rec_model_path)

# win = dlib.image_window()

# 候选人脸描述子list

descriptors = []

# 对文件夹下的每一个人脸进行:

# 1.人脸检测

# 2.关键点检测

# 3.描述子提取

for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):

print("Processing file: {}".format(f))

img = io.imread(f)

#win.clear_overlay()

#win.set_image(img)

# 1.人脸检测

dets = detector(img, 1)

print("Number of faces detected: {}".format(len(dets)))

for k, d in enumerate(dets):

# 2.关键点检测

shape = sp(img, d)

# 画出人脸区域和和关键点

# win.clear_overlay()

# win.add_overlay(d)

# win.add_overlay(shape)

# 3.描述子提取,128D向量

face_descriptor = facerec.compute_face_descriptor(img, shape)

# 转换为numpy array

v = numpy.array(face_descriptor)

descriptors.append(v)

# 对需识别人脸进行同样处理

# 提取描述子,不再注释

img = io.imread(img_path)

dets = detector(img, 1)

dist = []

for k, d in enumerate(dets):

shape = sp(img, d)

face_descriptor = facerec.compute_face_descriptor(img, shape)

d_test = numpy.array(face_descriptor)

# 计算欧式距离

for i in descriptors:

dist_ = numpy.linalg.norm(i-d_test)

dist.append(dist_)

# 候选人名单

candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']

# 候选人和距离组成一个dict

c_d = dict(zip(candidate,dist))

cd_sorted = sorted(c_d.iteritems(), key=lambda d:d[1])

print "\n The person is: ",cd_sorted[0][0]

dlib.hit_enter_to_continue()

4.运行结果

我们在.py所在的文件夹下打开命令行,运行如下命令

python girl-face-rec.py 1.dat 2.dat ./candidate-faecs test1.jpg

由于shape_predictor_68_face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat名字实在太长,所以我把它们重命名为1.dat和2.dat。

运行结果如下:

The person is Bingbing。

记忆力不好的同学可以翻上去看看test1.jpg是谁的图片。有兴趣的话可以把四张测试图片都运行下试试。

这里需要说明的是,前三张图输出结果都是非常理想的。但是第四张测试图片的输出结果是候选人4。对比一下两张图片可以很容易发现混淆的原因。

机器毕竟不是人,机器的智能还需要人来提升。

有兴趣的同学可以继续深入研究如何提升识别的准确率。比如每个人的候选图片用多张,然后对比和每个人距离的平均值之类的。全凭自己了。

python人脸识别所用的优化算法有什么

python三步实现人脸识别

Face Recognition软件包

这是世界上最简单的人脸识别库了。你可以通过Python引用或者命令行的形式使用它,来管理和识别人脸。

该软件包使用dlib中最先进的人脸识别深度学习算法,使得识别准确率在《Labled Faces in the world》测试基准下达到了99.38%。

它同时提供了一个叫face_recognition的命令行工具,以便你可以用命令行对一个文件夹中的图片进行识别操作。

特性

在图片中识别人脸

找到图片中所有的人脸

找到并操作图片中的脸部特征

获得图片中人类眼睛、鼻子、嘴、下巴的位置和轮廓

找到脸部特征有很多超级有用的应用场景,当然你也可以把它用在最显而易见的功能上:美颜功能(就像美图秀秀那样)。

鉴定图片中的脸

识别图片中的人是谁。

你甚至可以用这个软件包做人脸的实时识别。

这里有一个实时识别的例子:

1

安装

环境要求

Python3.3+或者Python2.7

MacOS或者Linux(Windows不做支持,但是你可以试试,也许也能运行)

安装步骤

在MacOS或者Linux上安装

首先,确保你安装了dlib,以及该软件的Python绑定接口。如果没有的话,看这篇安装说明:

1      

然后,用pip安装这个软件包:

如果你安装遇到问题,可以试试这个安装好了的虚拟机:

1      

在树莓派2+上安装

看这篇说明:

1      

在Windows上安装

虽然Windows不是官方支持的,但是有热心网友写出了一个Windows上的使用指南,请看这里:

1      

使用已经配置好的虚拟机(支持VMWare和VirtualBox)

看这篇说明:

1      

使用方法

命令行接口

如果你已经安装了face_recognition,那么你的系统中已经有了一个名为face_recognition的命令,你可以使用它对图片进行识别,或者对一个文件夹中的所有图片进行识别。

首先你需要提供一个文件夹,里面是所有你希望系统认识的人的图片。其中每个人一张图片,图片以人的名字命名。

然后你需要准备另一个文件夹,里面是你要识别的图片。

然后你就可以运行face_recognition命令了,把刚刚准备的两个文件夹作为参数传入,命令就会返回需要识别的图片中都出现了谁。

输出中,识别到的每张脸都单独占一行,输出格式为

通过Python模块使用

你可以通过导入face_recognition模块来使用它,使用方式超级简单,文档在这里:

自动找到图片中所有的脸

看看这个例子自己实践一下:

1      

你还可以自定义替换人类识别的深度学习模型。

注意:想获得比较好的性能的话,你可能需要GPU加速(使用英伟达的CUDA库)。所以编译的时候你也需要开启dlib的GPU加速选项。

你也可以通过这个例子实践一下:

1      

如果你有很多图片和GPU,你也可以并行快速识别,看这篇文章:

1      

自动识别人脸特征

试试这个例子:

1      

识别人脸鉴定是哪个人

这里是一个例子:

1      

谁用过python中的第三方库face recognition

简介

该库可以通过python或者命令行即可实现人脸识别的功能。使用dlib深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild)上的准确率为99.38%。

在github上有相关的链接和API文档。

在下方为提供的一些相关源码或是文档。当前库的版本是v0.2.0,点击docs可以查看API文档,我们可以查看一些函数相关的说明等。

安装配置

安装配置很简单,按照github上的说明一步一步来就可以了。

根据你的python版本输入指令:

pip install face_recognition11

或者

pip3 install face_recognition11

正常来说,安装过程中会出错,会在安装dlib时出错,可能报错也可能会卡在那不动。因为pip在编译dlib时会出错,所以我们需要手动编译dlib再进行安装。

按照它给出的解决办法:

1、先下载下来dlib的源码。

git clone

2、编译dlib。

cd dlib

mkdir build

cd build

cmake .. -DDLIB_USE_CUDA=0 -DUSE_AVX_INSTRUCTIONS=1

cmake --build1234512345

3、编译并安装python的拓展包。

cd ..

python3 setup.py install --yes USE_AVX_INSTRUCTIONS --no DLIB_USE_CUDA1212

注意:这个安装步骤是默认认为没有GPU的,所以不支持cuda。

在自己手动编译了dlib后,我们可以在python中import dlib了。

之后再重新安装,就可以配置成功了。

根据你的python版本输入指令:

pip install face_recognition11

或者

pip3 install face_recognition11

安装成功之后,我们可以在python中正常import face_recognition了。

编写人脸识别程序

编写py文件:

# -*- coding: utf-8 -*-

#

# 检测人脸

import face_recognition

import cv2

# 读取图片并识别人脸

img = face_recognition.load_image_file("silicon_valley.jpg")

face_locations = face_recognition.face_locations(img)

print face_locations

# 调用opencv函数显示图片

img = cv2.imread("silicon_valley.jpg")

cv2.namedWindow("原图")

cv2.imshow("原图", img)

# 遍历每个人脸,并标注

faceNum = len(face_locations)

for i in range(0, faceNum):

top = face_locations[i][0]

right = face_locations[i][1]

bottom = face_locations[i][2]

left = face_locations[i][3]

start = (left, top)

end = (right, bottom)

color = (55,255,155)

thickness = 3

cv2.rectangle(img, start, end, color, thickness)

# 显示识别结果

cv2.namedWindow("识别")

cv2.imshow("识别", img)

cv2.waitKey(0)

cv2.destroyAllWindows()12345678910111213141516171819202122232425262728293031323334353637381234567891011121314151617181920212223242526272829303132333435363738

注意:这里使用了python-OpenCV,一定要配置好了opencv才能运行成功。

运行结果:

程序会读取当前目录下指定的图片,然后识别其中的人脸,并标注每个人脸。

(使用图片来自美剧硅谷)

编写人脸比对程序

首先,我在目录下放了几张图片:

这里用到的是一张乔布斯的照片和一张奥巴马的照片,和一张未知的照片。

编写程序:

# 识别图片中的人脸

import face_recognition

jobs_image = face_recognition.load_image_file("jobs.jpg");

obama_image = face_recognition.load_image_file("obama.jpg");

unknown_image = face_recognition.load_image_file("unknown.jpg");

jobs_encoding = face_recognition.face_encodings(jobs_image)[0]

obama_encoding = face_recognition.face_encodings(obama_image)[0]

unknown_encoding = face_recognition.face_encodings(unknown_image)[0]

results = face_recognition.compare_faces([jobs_encoding, obama_encoding], unknown_encoding )

labels = ['jobs', 'obama']

print('results:'+str(results))

for i in range(0, len(results)):

if results[i] == True:

print('The person is:'+labels[i])123456789101112131415161718123456789101112131415161718

运行结果:

识别出未知的那张照片是乔布斯的。

摄像头实时识别

代码:

# -*- coding: utf-8 -*-

import face_recognition

import cv2

video_capture = cv2.VideoCapture(1)

obama_img = face_recognition.load_image_file("obama.jpg")

obama_face_encoding = face_recognition.face_encodings(obama_img)[0]

face_locations = []

face_encodings = []

face_names = []

process_this_frame = True

while True:

ret, frame = video_capture.read()

small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

if process_this_frame:

face_locations = face_recognition.face_locations(small_frame)

face_encodings = face_recognition.face_encodings(small_frame, face_locations)

face_names = []

for face_encoding in face_encodings:

match = face_recognition.compare_faces([obama_face_encoding], face_encoding)

if match[0]:

name = "Barack"

else:

name = "unknown"

face_names.append(name)

process_this_frame = not process_this_frame

for (top, right, bottom, left), name in zip(face_locations, face_names):

top *= 4

right *= 4

bottom *= 4

left *= 4

cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), 2)

font = cv2.FONT_HERSHEY_DUPLEX

cv2.putText(frame, name, (left+6, bottom-6), font, 1.0, (255, 255, 255), 1)

cv2.imshow('Video', frame)

if cv2.waitKey(1) 0xFF == ord('q'):

break

video_capture.release()

cv2.destroyAllWindows()1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545512345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455

识别结果:

我直接在手机上百度了几张图试试,程序识别出了奥巴马。

这个库很cool啊!

python opencv 怎么利用csv文件训练人脸识别模型代码

1.1.介绍Introduction

从OpenCV2.4开始,加入了新的类FaceRecognizer,我们可以使用它便捷地进行人脸识别实验。本文既介绍代码使用,又介绍算法原理。(他写的源代码,我们可以在OpenCV的opencv\modules\contrib\doc\facerec\src下找到,当然也可以在他的github中找到,如果你想研究源码,自然可以去看看,不复杂)

目前支持的算法有

Eigenfaces特征脸createEigenFaceRecognizer()

Fisherfaces createFisherFaceRecognizer()

LocalBinary Patterns Histograms局部二值直方图 createLBPHFaceRecognizer()

下面所有的例子中的代码在OpenCV安装目录下的samples/cpp下面都能找到,所有的代码商用或者学习都是免费的。

1.2.人脸识别Face Recognition

对人类来说,人脸识别很容易。文献[Tu06]告诉我们,仅仅是才三天的婴儿已经可以区分周围熟悉的人脸了。那么对于计算机来说,到底有多难?其实,迄今为止,我们对于人类自己为何可以区分不同的人所知甚少。是人脸内部特征(眼睛、鼻子、嘴巴)还是外部特征(头型、发际线)对于人类识别更有效?我们怎么分析一张图像,大脑是如何对它编码的?David Hubel和TorstenWiesel向我们展示,我们的大脑针对不同的场景,如线、边、角或者运动这些局部特征有专门的神经细胞作出反应。显然我们没有把世界看成零散的块块,我们的视觉皮层必须以某种方式把不同的信息来源转化成有用的模式。自动人脸识别就是如何从一幅图像中提取有意义的特征,把它们放入一种有用的表示方式,然后对他们进行一些分类。基于几何特征的人脸的人脸识别可能是最直观的方法来识别人脸。第一个自动人脸识别系统在[Kanade73]中又描述:标记点(眼睛、耳朵、鼻子等的位置)用来构造一个特征向量(点与点之间的距离、角度等)。通过计算测试和训练图像的特征向量的欧氏距离来进行识别。这样的方法对于光照变化很稳健,但也有巨大的缺点:标记点的确定是很复杂的,即使是使用最先进的算法。一些几何特征人脸识别近期工作在文献[Bru92]中有描述。一个22维的特征向量被用在一个大数据库上,单靠几何特征不能提供足够的信息用于人脸识别。

特征脸方法在文献[TP91]中有描述,他描述了一个全面的方法来识别人脸:面部图像是一个点,这个点是从高维图像空间找到它在低维空间的表示,这样分类变得很简单。低维子空间低维是使用主元分析(Principal Component Analysis,PCA)找到的,它可以找拥有最大方差的那个轴。虽然这样的转换是从最佳重建角度考虑的,但是他没有把标签问题考虑进去。[gm:读懂这段需要一些机器学习知识]。想象一个情况,如果变化是基于外部来源,比如光照。轴的最大方差不一定包含任何有鉴别性的信息,因此此时的分类是不可能的。因此,一个使用线性鉴别(Linear Discriminant Analysis,LDA)的特定类投影方法被提出来解决人脸识别问题[BHK97]。其中一个基本的想法就是,使类内方差最小的同时,使类外方差最大。

近年来,各种局部特征提取方法出现。为了避免输入的图像的高维数据,仅仅使用的局部特征描述图像的方法被提出,提取的特征(很有希望的)对于局部遮挡、光照变化、小样本等情况更强健。有关局部特征提取的方法有盖伯小波(Gabor Waelets)([Wiskott97]),离散傅立叶变换(DiscreteCosinus Transform,DCT)([Messer06]),局部二值模式(LocalBinary Patterns,LBP)([AHP04])。使用什么方法来提取时域空间的局部特征依旧是一个开放性的研究问题,因为空间信息是潜在有用的信息。

1.3.人脸库Face Database

我们先获取一些数据来进行实验吧。我不想在这里做一个幼稚的例子。我们在研究人脸识别,所以我们需要一个真的人脸图像!你可以自己创建自己的数据集,也可以从这里()下载一个。

ATTFacedatabase又称ORL人脸数据库,40个人,每人10张照片。照片在不同时间、不同光照、不同表情(睁眼闭眼、笑或者不笑)、不同人脸细节(戴眼镜或者不戴眼镜)下采集。所有的图像都在一个黑暗均匀的背景下采集的,正面竖直人脸(有些有有轻微旋转)。