您的位置:

算法python代码已经有了,python完数的编程代码

本文目录一览:

如何利用python语言实现机器学习算法

基于以下三个原因,我们选择Python作为实现机器学习算法的编程语言:(一) Python的语法清晰;(二) 易于操作纯文本文件;(三) 使用广泛,存在大量的开发文档。 可执行伪代码 Python具有清晰的语法结构,大家也把它称作可执行伪代码(executable pseudo-code)。默认安装的Python开发环境已经附带了很多高级数据类型,如列表、元组、字典、集合、队列等,无需进一步编程就可以使用这些数据类型的操作。使用这些数据类型使得实现抽象的数学概念非常简单。此外,读者还可以使用自己熟悉的编程风格,如面向对象编程、面向过程编程、或者函数式编程。不熟悉Python的读者可以参阅附录A,该附录详细介绍了Python语言、Python使用的数据类型以及安装指南。 Python语言处理和操作文本文件非常简单,非常易于处理非数值型数据。Python语言提供了丰富的正则表达式函数以及很多访问Web页面的函数库,使得从HTML中提取数据变得非常简单直观。 Python比较流行 Python语言使用广泛,代码范例也很多,便于读者快速学习和掌握。此外,在开发实际应用程序时,也可以利用丰富的模块库缩短开发周期。 在科学和金融领域,Python语言得到了广泛应用。SciPy和NumPy等许多科学函数库都实现了向量和矩阵操作,这些函数库增加了代码的可读性,学过线性代数的人都可以看懂代码的实际功能。另外,科学函数库SciPy和NumPy使用底层语言(C和Fortran)编写,提高了相关应用程序的计算性能。本书将大量使用Python的NumPy。 Python的科学工具可以与绘图工具Matplotlib协同工作。Matplotlib可以绘制二D、三D图形,也可以处理科学研究中经常使用到的图形,所以本书也将大量使用Matplotlib。 Python开发环境还提供了交互式shell环境,允许用户开发程序时查看和检测程序内容。 Python开发环境将来还会集成Pylab模块,它将NumPy、SciPy和Matplotlib合并为一个开发环境。在本书写作时,Pylab还没有并入Python环境,但是不远的将来我们肯定可以在Python开发环境找到它。 Python语言的特色 诸如MATLAB和Mathematica等高级程序语言也允许用户执行矩阵操作,MATLAB甚至还有许多内嵌的特征可以轻松地构造机器学习应用,而且MATLAB的运算速度也很快。然而MATLAB的不足之处是软件费用太高,单个软件授权就要花费数千美元。虽然也有适合MATLAB的第三方插件,但是没有一个有影响力的大型开源项目。 Java和C等强类型程序设计语言也有矩阵数学库,然而对于这些程序设计语言来说,最大的问题是即使完成简单的操作也要编写大量的代码。程序员首先需要定义变量的类型,对于Java来说,每次封装属性时还需要实现getter和setter方法。另外还要记着实现子类,即使并不想使用子类,也必须实现子类方法。为了完成一个简单的工作,我们必须花费大量时间编写了很多无用冗长的代码。Python语言则与Java和C完全不同,它清晰简练,而且易于理解,即使不是编程人员也能够理解程序的含义,而Java和C对于非编程人员则像天书一样难于理解。 所有人在小学二年级已经学会了写作,然而大多数人必须从事其他更重要的工作。 ——鲍比·奈特 也许某一天,我们可以在这句话中将“写作”替代为“编写代码”,虽然有些人对于编写代码很感兴趣,但是对于大多数人来说,编程仅是完成其他任务的工具而已。Python语言是高级编程语言,我们可以花费更多的时间处理数据的内在含义,而无须花费太多精力解决计算机如何得到数据结果。Python语言使得我们很容易表达自己的目的。 Python语言的缺点 Python语言唯一的不足是性能问题。Python程序运行的效率不如Java或者C代码高,但是我们可以使用Python调用C编译的代码。这样,我们就可以同时利用C和Python的优点,逐步地开发机器学习应用程序。我们可以首先使用Python编写实验程序,如果进一步想要在产品中实现机器学习,转换成C代码也不困难。如果程序是按照模块化原则组织的,我们可以先构造可运行的Python程序,然后再逐步使用C代码替换核心代码以改进程序的性能。C++ Boost库就适合完成这个任务,其他类似于Cython和PyPy的工具也可以编写强类型的Python代码,改进一般Python程序的性能。 如果程序的算法或者思想有缺陷,则无论程序的性能如何,都无法得到正确的结果。如果解决问题的思想存在问题,那么单纯通过提高程序的运行效率,扩展用户规模都无法解决这个核心问题。从这个角度来看,Python快速实现系统的优势就更加明显了,我们可以快速地检验算法或者思想是否正确,如果需要,再进一步优化代码

有了Python 是不是不需要学数据结构,算法了

这要看你使用Python的目的是什么。

如果你是使用Python进行一些简单的计算那可能不需要。Python里面一些内置的函数比如,sorted实现了排序算法,让写程序方便了很多。

但是如果要解决一些更复杂问题,程序还是需要自己来实现,需要根据问题对经典的算法进行少许修改。比如树的搜索、树的遍历都仍然需要自己动手来写的。

python中有哪些简单的算法?

1、插入排序

插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。

2、希尔排序

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

3、冒泡排序

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

4、快速排序

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

5、直接选择排序

基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。

6、堆排序

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] = A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

7、归并排序

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

8、基数排序

基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部分资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。

用python K值聚类识别图片主要颜色的程序,算法python代码已经有了

难得被人求助一次, 这个必须回答一下. 不过你的需求确实没有写得太清楚. 根据k值算法出来的是主要颜色有三个, 所以我把三个颜色都打在记事本里了. 如果和你的需求有误, 请自行解决吧.

另外这里需要用到numpy的库, 希望你装了, 如果没装, 这个直接安装也比较麻烦, 可以看一下portablepython的绿色版。

代码如下:

# -*- coding: utf-8 -*-

import Image

import random

import numpy

class Cluster(object):

    def __init__(self):

        self.pixels = []

        self.centroid = None

    def addPoint(self, pixel):

        self.pixels.append(pixel)

    def setNewCentroid(self):

        R = [colour[0] for colour in self.pixels]

        G = [colour[1] for colour in self.pixels]

        B = [colour[2] for colour in self.pixels]

        R = sum(R) / len(R)

        G = sum(G) / len(G)

        B = sum(B) / len(B)

        self.centroid = (R, G, B)

        self.pixels = []

        return self.centroid

class Kmeans(object):

    def __init__(self, k=3, max_iterations=5, min_distance=5.0, size=200):

        self.k = k

        self.max_iterations = max_iterations

        self.min_distance = min_distance

        self.size = (size, size)

    def run(self, image):

        self.image = image

        self.image.thumbnail(self.size)

        self.pixels = numpy.array(image.getdata(), dtype=numpy.uint8)

        self.clusters = [None for i in range(self.k)]

        self.oldClusters = None

        randomPixels = random.sample(self.pixels, self.k)

        for idx in range(self.k):

            self.clusters[idx] = Cluster()

            self.clusters[idx].centroid = randomPixels[idx]

        iterations = 0

        while self.shouldExit(iterations) is False:

            self.oldClusters = [cluster.centroid for cluster in self.clusters]

            print iterations

            for pixel in self.pixels:

                self.assignClusters(pixel)

            for cluster in self.clusters:

                cluster.setNewCentroid()

            iterations += 1

        return [cluster.centroid for cluster in self.clusters]

    def assignClusters(self, pixel):

        shortest = float('Inf')

        for cluster in self.clusters:

            distance = self.calcDistance(cluster.centroid, pixel)

            if distance  shortest:

                shortest = distance

                nearest = cluster

        nearest.addPoint(pixel)

    def calcDistance(self, a, b):

        result = numpy.sqrt(sum((a - b) ** 2))

        return result

    def shouldExit(self, iterations):

        if self.oldClusters is None:

            return False

        for idx in range(self.k):

            dist = self.calcDistance(

                numpy.array(self.clusters[idx].centroid),

                numpy.array(self.oldClusters[idx])

            )

            if dist  self.min_distance:

                return True

        if iterations = self.max_iterations:

            return False

        return True

    # ############################################

    # The remaining methods are used for debugging

    def showImage(self):

        self.image.show()

    def showCentroidColours(self):

        for cluster in self.clusters:

            image = Image.new("RGB", (200, 200), cluster.centroid)

            image.show()

    def showClustering(self):

        localPixels = [None] * len(self.image.getdata())

        for idx, pixel in enumerate(self.pixels):

                shortest = float('Inf')

                for cluster in self.clusters:

                    distance = self.calcDistance(

                        cluster.centroid,

                        pixel

                    )

                    if distance  shortest:

                        shortest = distance

                        nearest = cluster

                localPixels[idx] = nearest.centroid

        w, h = self.image.size

        localPixels = numpy.asarray(localPixels)\

            .astype('uint8')\

            .reshape((h, w, 3))

        colourMap = Image.fromarray(localPixels)

        colourMap.show()

    

if __name__=="__main__":

    from PIL import Image

    import os

    

    k_image=Kmeans()

    path = r'.\\pics\\'

    fp = open('file_color.txt','w')

    for filename in os.listdir(path):

        print path+filename

        try:

            color = k_image.run(Image.open(path+filename))

            fp.write('The color of '+filename+' is '+str(color)+'\n')

        except:

            print "This file format is not support"

    fp.close()

从零开始用Python构建神经网络

从零开始用Python构建神经网络

动机:为了更加深入的理解深度学习,我们将使用 python 语言从头搭建一个神经网络,而不是使用像 Tensorflow 那样的封装好的框架。我认为理解神经网络的内部工作原理,对数据科学家来说至关重要。

这篇文章的内容是我的所学,希望也能对你有所帮助。

神经网络是什么?

介绍神经网络的文章大多数都会将它和大脑进行类比。如果你没有深入研究过大脑与神经网络的类比,那么将神经网络解释为一种将给定输入映射为期望输出的数学关系会更容易理解。

神经网络包括以下组成部分

? 一个输入层,x

? 任意数量的隐藏层

? 一个输出层,?

? 每层之间有一组权值和偏置,W and b

? 为隐藏层选择一种激活函数,σ。在教程中我们使用 Sigmoid 激活函数

下图展示了 2 层神经网络的结构(注意:我们在计算网络层数时通常排除输入层)

2 层神经网络的结构

用 Python 可以很容易的构建神经网络类

训练神经网络

这个网络的输出 ? 为:

你可能会注意到,在上面的等式中,输出 ? 是 W 和 b 函数。

因此 W 和 b 的值影响预测的准确率. 所以根据输入数据对 W 和 b 调优的过程就被成为训练神经网络。

每步训练迭代包含以下两个部分:

? 计算预测结果 ?,这一步称为前向传播

? 更新 W 和 b,,这一步成为反向传播

下面的顺序图展示了这个过程:

前向传播

正如我们在上图中看到的,前向传播只是简单的计算。对于一个基本的 2 层网络来说,它的输出是这样的:

我们在 NeuralNetwork 类中增加一个计算前向传播的函数。为了简单起见我们假设偏置 b 为0:

但是我们还需要一个方法来评估预测结果的好坏(即预测值和真实值的误差)。这就要用到损失函数。

损失函数

常用的损失函数有很多种,根据模型的需求来选择。在本教程中,我们使用误差平方和作为损失函数。

误差平方和是求每个预测值和真实值之间的误差再求和,这个误差是他们的差值求平方以便我们观察误差的绝对值。

训练的目标是找到一组 W 和 b,使得损失函数最好小,也即预测值和真实值之间的距离最小。

反向传播

我们已经度量出了预测的误差(损失),现在需要找到一种方法来传播误差,并以此更新权值和偏置。

为了知道如何适当的调整权值和偏置,我们需要知道损失函数对权值 W 和偏置 b 的导数。

回想微积分中的概念,函数的导数就是函数的斜率。

梯度下降法

如果我们已经求出了导数,我们就可以通过增加或减少导数值来更新权值 W 和偏置 b(参考上图)。这种方式被称为梯度下降法。

但是我们不能直接计算损失函数对权值和偏置的导数,因为在损失函数的等式中并没有显式的包含他们。因此,我们需要运用链式求导发在来帮助计算导数。

链式法则用于计算损失函数对 W 和 b 的导数。注意,为了简单起见。我们只展示了假设网络只有 1 层的偏导数。

这虽然很简陋,但是我们依然能得到想要的结果—损失函数对权值 W 的导数(斜率),因此我们可以相应的调整权值。

现在我们将反向传播算法的函数添加到 Python 代码中

为了更深入的理解微积分原理和反向传播中的链式求导法则,我强烈推荐 3Blue1Brown 的如下教程:

Youtube:

整合并完成一个实例

既然我们已经有了包括前向传播和反向传播的完整 Python 代码,那么就将其应用到一个例子上看看它是如何工作的吧。

神经网络可以通过学习得到函数的权重。而我们仅靠观察是不太可能得到函数的权重的。

让我们训练神经网络进行 1500 次迭代,看看会发生什么。 注意观察下面每次迭代的损失函数,我们可以清楚地看到损失函数单调递减到最小值。这与我们之前介绍的梯度下降法一致。

让我们看看经过 1500 次迭代后的神经网络的最终预测结果:

经过 1500 次迭代训练后的预测结果

我们成功了!我们应用前向和方向传播算法成功的训练了神经网络并且预测结果收敛于真实值。

注意预测值和真实值之间存在细微的误差是允许的。这样可以防止模型过拟合并且使得神经网络对于未知数据有着更强的泛化能力。

下一步是什么?

幸运的是我们的学习之旅还没有结束,仍然有很多关于神经网络和深度学习的内容需要学习。例如:

? 除了 Sigmoid 以外,还可以用哪些激活函数

? 在训练网络的时候应用学习率

? 在面对图像分类任务的时候使用卷积神经网络

我很快会写更多关于这个主题的内容,敬请期待!

最后的想法

我自己也从零开始写了很多神经网络的代码

虽然可以使用诸如 Tensorflow 和 Keras 这样的深度学习框架方便的搭建深层网络而不需要完全理解其内部工作原理。但是我觉得对于有追求的数据科学家来说,理解内部原理是非常有益的。

这种练习对我自己来说已成成为重要的时间投入,希望也能对你有所帮助