您的位置:

python数据加工2,python二维数据处理

本文目录一览:

python数据分析的基本步骤

一、环境搭建

数据分析最常见的环境是Anaconda+Jupyter notebook

二、导入包

2.1数据处理包导入

2.2画图包导入

2.3日期处理包导入

2.4jupyter notebook绘图设置

三、读取数据

四、数据预览

1.数据集大小

2.查看随便几行或前几行或后几行

3.查看数据类型

4.查看数据的数量、无重复值、平均值、最小值、最大值等

5.查看字段名、类型、空值数为多少

五、数据处理

把需要的字段挑选出来。

数据类型转换

日期段数据处理。

学Python数据分析看谁的书比较好

一、Python编程

本书是一本针对所有层次的Python 读者而作的Python 入门书。全书分两部分:第一部分介绍用Python 编程所必须了解的基本概念,包括matplotlib、NumPy 和Pygal 等强大的Python 库和工具介绍,以及列表、字典、if 语句、类、文件与异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的Python 2D 游戏开发如何利用数据生成交互式的信息图,以及创建和定制简单的Web 应用,并帮读者解决常见编程问题和困惑。

二、利用Python进行数据分析

“科学计算和数据分析社区已经等待这本书很多年了:大量具体的实践建议,以及大量综合应用方法。本书在未来几年里肯定会成为Python领域中技术计算的权威指南。”

——Fernando Pérez 加州大学伯克利分校 研究科学家, IPython的创始人之一

【内容简介】

还在苦苦寻觅用Python控制、处理、整理、分析结构化数据的完整课程?本书含有大量的实践案例,你将学会如何利用各种Python库(包括NumPy、pandas、matplotlib以及IPython等)高效地解决各式各样的数据分析问题。

由于作者Wes McKinney是pandas库的主要作者,所以本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员。

三、Python基础教程(第2版)

本书是经典教程的全新改版,作者根据Python 3.0版本的种种变化,全面改写了书中内容,做到既能“瞻前”也能“顾后”。本书层次鲜明、结构严谨、内容翔实,特别是在最后几章,作者将前面讲述的内容应用到了10个引人入胜的项目中,并以模板的形式介绍了项目的开发过程。本书既适合初学者夯实基础,又能帮助Python程序员提升技能,即使是 Python方面的技术专家,也能从书里找到令你耳目一新的东西。

四、Python核心编程(第二版)

本书是Python开发者的完全指南——针对 Python 2.5全面升级

·学习专业的Python风格、最佳实践和好的编程习惯;

·加强对Python对象、内存模型和Python面向对象特性的深入理解;

·构建更有效的Web、CGI、互联网、网络和其他客户端/服务器架构应用程序及软件;

·学习如何使用Python中的Tkinter和其他工具来开发自己的GUI应用程序及软件;

·通过用C等语言编写扩展来提升Python应用程序的性能,或者通过使用多线程增强I/0相关的应用程序的能力;

·学习Python中有关数据库的API,以及如何在Python中使用各种不同的数据库系统,包括MySQL、Postgres和 SQLite。

五、Head First Python(中文版)

你想过可以通过一本书就学会Python吗?《Head First Python(中文版)》超越枯燥的语法和甩法手册,通过一种独特的方法教你学习这种语言。你会迅速掌握Python的基础知识,然后转向持久存储、异常处理、Web开发、SQLite、数据加工和lGoogle App Engine。你还将学习如何为Android编写移动应用,这都要归功于Python为你赋予的强大能力。本书会提供充分并且完备的学习体验,帮助你成为一名真正的Python程序员。 作者巴里觉得你的时间相当宝贵,不应当过多地花费在与新概念的纠缠之中。通过应用认知科学和学习理论的最新研究成果,《Head First Python(中文版)》可以让你投入一个需要多感官参与的学习体验,这本书采用丰富直观的形式使你的大脑真正开动起来,而不是长篇累牍地说教,让你昏昏欲睡。

如何用python进行数据分析

1、Python数据分析流程及学习路径

数据分析的流程概括起来主要是:读写、处理计算、分析建模和可视化四个部分。在不同的步骤中会用到不同的Python工具。每一步的主题也包含众多内容。

根据每个部分需要用到的工具,Python数据分析的学习路径如下:

相关推荐:《Python入门教程》

2、利用Python读写数据

Python读写数据,主要包括以下内容:

我们以一小段代码来看:

可见,仅需简短的两三行代码即可实现Python读入EXCEL文件。

3、利用Python处理和计算数据

在第一步和第二步,我们主要使用的是Python的工具库NumPy和pandas。其中,NumPy主要用于矢量化的科学计算,pandas主要用于表型数据处理。

4、利用Python分析建模

在分析和建模方面,主要包括Statsmdels和Scikit-learn两个库。

Statsmodels允许用户浏览数据,估计统计模型和执行统计测试。可以为不同类型的数据和每个估算器提供广泛的描述性统计,统计测试,绘图函数和结果统计列表。

Scikit-leran则是著名的机器学习库,可以迅速使用各类机器学习算法。

5、利用Python数据可视化

数据可视化是数据工作中的一项重要内容,它可以辅助分析也可以展示结果。

python数据加工,决策树,求助

new_case =[{'from': 'start','to': 'A'},{'from': 'A','to': 'B'},{'from': 'B','to': 'C'},

{'from': 'B','to': 'D'},{'from': 'start','to': 'F'},{'from': 'start','to': 'E'},

{'from': 'E','to': 'G'},{'from': 'E','to': 'C'},{'from': 'E','to': 'D'}]

L = []

def add_to_list(l, key_dic, dic_list):

    l.append(key_dic['from'])

    found = False

    for dic in dic_list:

        if(dic['from'] == key_dic['to']):

            found = True;

            add_to_list(l, dic, dic_list)

            del l[-1]

    if not found:

        t = l[:] + [key_dic['to']]

        L.append(t)

    

for dic in new_case:

    if dic['from'] == 'start':

        l = []

        add_to_list(l, dic, new_case)

        

for i in L:

    print(i)

python数据挖掘工具包有什么优缺点?

【导读】python数据挖掘工具包就是scikit-learn,scikit-learn是一个基于NumPy, SciPy,

Matplotlib的开源机器学习工具包,主要涵盖分类,回归和聚类算法,例如SVM,

逻辑回归,朴素贝叶斯,随机森林,k-means等算法,代码和文档都非常不错,在许多Python项目中都有应用。

优点:

1、文档齐全:官方文档齐全,更新及时。

2、接口易用:针对所有算法提供了一致的接口调用规则,不管是KNN、K-Means还是PCA.

3、算法全面:涵盖主流机器学习任务的算法,包括回归算法、分类算法、聚类分析、数据降维处理等。

缺点:

缺点是scikit-learn不支持分布式计算,不适合用来处理超大型数据。

Pandas是一个强大的时间序列数据处理工具包,Pandas是基于Numpy构建的,比Numpy的使用更简单。最初开发的目的是为了分析财经数据,现在已经广泛应用在Python数据分析领域中。Pandas,最基础的数据结构是Series,用它来表达一行数据,可以理解为一维的数组。另一个关键的数据结构为DataFrame,它表示的是二维数组

Pandas是基于NumPy和Matplotlib开发的,主要用于数据分析和数据可视化,它的数据结构DataFrame和R语言里的data.frame很像,特别是对于时间序列数据有自己的一套分析机制。有一本书《Python

for Data Analysis》,作者是Pandas的主力开发,依次介绍了iPython, NumPy,

Pandas里的相关功能,数据可视化,数据清洗和加工,时间数据处理等,案例包括金融股票数据挖掘等,相当不错。

Mlpy是基于NumPy/SciPy的Python机器学习模块,它是Cython的扩展应用。

关于python数据挖掘工具包的优缺点,就给大家介绍到这里了,scikit-learn提供了一致的调用接口。它基于Numpy和scipy等Python数值计算库,提供了高效的算法实现,所以想要学习python,以上的内容得学会。