本文目录一览:
mysql索引
二叉搜索树、N叉树
页分裂:B+树的插入可能会引起数据页的分裂,删除可能会引起数据页的合并,二者都是比较重的IO消耗,所以比较好的方式是顺序插入数据,这也是我们一般使用自增主键的原因之一。
页分裂逆过程:页合并,当删除数据后,相邻的两个数据页利用率很低的时候会做数据页合并
主键索引:key:主键,value:数据页,存储每行数据
非主键索引:key:非主键索引,value:主键key,导致回表
最左匹配:优先将区分度高的列放到前面,这样可以高效索引,
最左匹配原则遇到范围查询就停止匹配,范围查询(、、between、like)为什么?因为出现范围匹配后,后面的索引字段无法保证有序,局部有序失去,顺序失去则无法提高查询效率
SELECT * FROM table WHERE a IN (1,2,3) and b 1;
如何建立索引?
还是对(a,b)建立索引,因为IN在这里可以视为等值引用,不会中止索引匹配,所以还是(a,b)!
索引组织表
索引用页存储:key【10】-point【6】,通过调整key大小,当页大小固定的情况下,通过调整key大小,使得N叉树变化;
如key 10, point 6则单个索引16字节,页大小为16k,则页面总共可以存储1024个索引,即N大小
覆盖索引: 二级索引的信息已经存在想要的列,例如主键
如果现在有一个高频请求,要根据市民的身份证号查询他的姓名,这个联合索引就有意义了。它可以在这个高频请求上用到覆盖索引,不再需要回表查整行记录,减少语句的执行时间。
索引下推优化:可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。
整理索引碎片,重建表:alter table T engine=InnoDB
首先是看key的大小,另外是数据页的大小,如果需要改变N,则需要从这两个方面做改动;
一个innoDB引擎的表,数据量非常大,根据二级索引搜索会比主键搜索快,文章阐述的原因是主键索引和数据行在一起,非常大搜索慢,我的疑惑是:通过普通索引找到主键ID后,同样要跑一边主键索引,对于使用覆盖索引的情况下,使用覆盖索引可以直接解决问题
mysql之普通索引和唯一索引
常见的索引类型:哈希表、有序数组、搜索树。
mysql之普通索引和唯一索引。
执行查询的语句是 select id from T where k=5
这个查询语句在索引树上查找的过程,先是通过 B+ 树从树根开始,按层搜索到叶子节点,也就是图中右下角的这个数据页,然后可以认为数据页内部通过二分法来定位记录。
InnoDB的索引组织结构:
change buffer:持久化的数据。InnoDB将更新操作缓存在 change buffer中,也就是说,change buffer 在内存中有拷贝,也会被写入到磁盘,主要节省的则是随机读磁盘的IO消耗。
change buffer 只限于用在普通索引的场景下,而不适用于唯一索引.
merge:将 change buffer 中的操作应用到原数据页,得到最新结果的过程。
merge执行流程:
1、从磁盘读入数据页到内存
2、从change buffer里找出这个数据页的change buffer记录,依次应用,得到新版数据页
3、写redo log,这个redo log包含了数据的变更和change buffer的变更。
change buffer 用的是 buffer pool 里的内存,因此不能无限增大。change buffer 的大小,可以通过参数 innodb_change_buffer_max_size=50 表示 change buffer 的大小最多只能占用 buffer pool 的 50%。
如果要在这张表中插入一个新记录 (4,400) 的话,InnoDB 的处理流程是怎样的。
第一种情况是,这个记录要更新的目标页在内存中
这时,InnoDB 的处理流程如下:
第二种情况是,这个记录要更新的目标页不在内存中
这时,InnoDB 的处理流程如下:
mysql insert into t(id,k) values(id1,k1),(id2,k2); 当前 k 索引树的状态,查找到位置后,k1 所在的数据页在内存 (InnoDB buffer pool) 中,k2 所在的数据页不在内存中。
分析这条更新语句,你会发现它涉及了四个部分:内存、redo log(ib_log_fileX)、 数据表空间(t.ibd)、系统表空间(ibdata1)。这条更新语句做了如下的操作(按照图中的数字顺序):
带change buffer的更新过程:
select * from t where k in (k1, k2) ,如果读语句发生在更新语句后不久,内存中的数据都还在,那么此时的这两个读操作就与系统表空间(ibdata1)和 redo log(ib_log_fileX)无关了.
MySQL数据库的索引的操作知多少
MySQL索引类型包括:
(1)普通索引
这是最基本的索引,它没有任何限制。它有以下几种创建方式:
◆创建索引
CREATE INDEX indexName ON mytable(username(length)); 如果是CHAR,VARCHAR类型,length可以小于字段实际长度;如果是BLOB和TEXT类型,必须指定 length,下同。
◆修改表结构
ALTER mytable ADD INDEX [indexName] ON (username(length))
◆创建表的时候直接指定
CREATE TABLE mytable( ID INT NOT NULL, username VARCHAR(16) NOT NULL, INDEX [indexName] (username(length)) ); 删除索引的语法:
DROP INDEX [indexName] ON mytable;
(2)唯一索引
与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值。如果是组合索引,则列值的组合必须唯一。它有以下几种创建方式:
◆创建索引
CREATE UNIQUE INDEX indexName ON mytable(username(length))
◆修改表结构
ALTER mytable ADD UNIQUE [indexName] ON (username(length))
◆创建表的时候直接指定
CREATE TABLE mytable( ID INT NOT NULL, username VARCHAR(16) NOT NULL, UNIQUE [indexName] (username(length)) );
(3)主键索引
它是一种特殊的唯一索引,不允许有空值。一般是在建表的时候同时创建主键索引:
CREATE TABLE mytable( ID INT NOT NULL, username VARCHAR(16) NOT NULL, PRIMARY KEY(ID) ); 当然也可以用 ALTER 命令。记住:一个表只能有一个主键。
(4)组合索引
为了形象地对比单列索引和组合索引,为表添加多个字段:
CREATE TABLE mytable( ID INT NOT NULL, username VARCHAR(16) NOT NULL, city VARCHAR(50) NOT NULL, age INT NOT NULL ); 为了进一步榨取MySQL的效率,就要考虑建立组合索引。就是将 name, city, age建到一个索引里:
ALTER TABLE mytable ADD INDEX name_city_age (name(10),city,age); 建表时,usernname长度为 16,这里用 10。这是因为一般情况下名字的长度不会超过10,这样会加速索引查询速度,还会减少索引文件的大小,提高INSERT的更新速度。
如果分别在 usernname,city,age上建立单列索引,让该表有3个单列索引,查询时和上述的组合索引效率也会大不一样,远远低于我们的组合索引。虽然此时有了三个索引,但MySQL只能用到其中的那个它认为似乎是最有效率的单列索引。
建立这样的组合索引,其实是相当于分别建立了下面三组组合索引:
usernname,city,age usernname,city usernname 为什么没有 city,age这样的组合索引呢?这是因为MySQL组合索引“最左前缀”的结果。简单的理解就是只从最左面的开始组合。并不是只要包含这三列的查询都会用到该组合索引,下面的几个SQL就会用到这个组合索引:
SELECT * FROM mytable WHREE username="admin" AND city="郑州" SELECT * FROM mytable WHREE username="admin" 而下面几个则不会用到:
SELECT * FROM mytable WHREE age=20 AND city="郑州" SELECT * FROM mytable WHREE city="郑州"
(5)建立索引的时机
一般来说,在WHERE和JOIN中出现的列需要建立索引,但也不完全如此,因为MySQL只对,=,=,,=,BETWEEN,IN,以及某些时候的LIKE才会使用索引。例如:
SELECT t.Name FROM mytable t LEFT JOIN mytable m ON t.Name=m.username WHERE m.age=20 AND m.city='郑州' 此时就需要对city和age建立索引,由于mytable表的userame也出现在了JOIN子句中,也有对它建立索引的必要。
刚才提到只有某些时候的LIKE才需建立索引。因为在以通配符%和_开头作查询时,MySQL不会使用索引。例如下句会使用索引:
SELECT * FROM mytable WHERE username like'admin%' 而下句就不会使用:
SELECT * FROM mytable WHEREt Name like'%admin' 因此,在使用LIKE时应注意以上的区别。
(6)索引的不足之处
上面都在说使用索引的好处,但过多的使用索引将会造成滥用。因此索引也会有它的缺点:
◆虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT、UPDATE和DELETE。因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件。
◆建立索引会占用磁盘空间的索引文件。一般情况这个问题不太严重,但如果你在一个大表上创建了多种组合索引,索引文件的会膨胀很快。
索引只是提高效率的一个因素,如果你的MySQL有大数据量的表,就需要花时间研究建立最优秀的索引,或优化查询语句。
(7)使用索引的注意事项
使用索引时,有以下一些技巧和注意事项:
◆索引不会包含有NULL值的列
只要列中包含有NULL值都将不会被包含在索引中,复合索引中只要有一列含有NULL值,那么这一列对于此复合索引就是无效的。所以我们在数据库设计时不要让字段的默认值为NULL。
◆使用短索引
对串列进行索引,如果可能应该指定一个前缀长度。例如,如果有一个CHAR(255)的列,如果在前10个或20个字符内,多数值是惟一的,那么就不要对整个列进行索引。短索引不仅可以提高查询速度而且可以节省磁盘空间和I/O操作。
◆索引列排序
MySQL查询只使用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引的。因此数据库默认排序可以符合要求的情况下不要使用排序操作;尽量不要包含多个列的排序,如果需要最好给这些列创建复合索引。
◆like语句操作
一般情况下不鼓励使用like操作,如果非使用不可,如何使用也是一个问题。like “%aaa%” 不会使用索引而like “aaa%”可以使用索引。
◆不要在列上进行运算
select * from users where YEAR(adddate)2007; 将在每个行上进行运算,这将导致索引失效而进行全表扫描,因此我们可以改成
select * from users where adddate‘2007-01-01’;
◆不使用NOT IN和操作
MySQL 数据库索引 -- B+树模型
这时我们需要:
1、定位到记录所在的页
2、从页内查找相应的记录
在前面我们知道了为了主键快速一条记录在页中的位置而设立页目录,类似的办法,为了定位一条记录在所在的数据页我们也可以建立一个别的目录,在建立这个目录的过程中,我们必须做2件事情:
上文叙述的目录项和用户记录长得挺像,只不过目录项中的两个列是主键和页号。所以,我们可以直接复用之前的数据页来存储目录项。采用 record_type 字段区分普通的记录
同时,目录项的 min_rec_flag 为1,普通记录都为0
上面的数据结构就是B+树,真正用来存放用户记录的都是B+树最底层的叶子节点,其余用来存放目录项记录的节点称为非叶子节点或者内节点,最上边的节点称为根节点。
这里我们假设一个数据页,只能存3条记录,实际上一个页可以存很多条记录。假设一个数据页可以存100条用户记录,1000条目录项记录,那么:
如果B+树只有1层,则最多存放 100 条用户记录
如果B+树只有2层,则最多能存放 1000 * 100 =
如果B+树只有3层,则最多能存放 1000 * 1000 * 100 =
如果B+树只有4层,则最多能存放 1000 * 1000 * 1000 * 100 =
所以,我们一般用到的B+树不会超过4层,也就意味着通过主键查找记录时,最多只需要进行4个页面的查找就可以找到。
InnoDB 会自动为主键或者带有 UNIQUE 属性的列建立索引。
KEY 和 INDEX 是同义词,创建索引命名时以 idx 为前缀,后面跟着需要建立索引的列名,且多个列名之间用下划线隔开。
也可以在修改表结构的时候添加索引
最后,删除这个索引。