本文目录一览:
- 1、Numpy array数组的常见运算
- 2、为什么NumPy数组如此高效
- 3、Python中numpy.array函数有啥作用呢?
- 4、python numpy是什么库
- 5、什么是数组的维度?Pyston中NumPy数组怎样使用?
Numpy array数组的常见运算
Numpy是Python最流行的数学计算库之一,它 支持多维数组与矩阵的各种运算。在Numpy库中ndarray对象是其核心,它支持任意维度的数组(向量),所有的运算都是以array为基础展开的。此外,在 Numpy的 矩阵mat是array的一个子集,也就是二维的数组。
下面我们来看一下array的基本运算。
NumPy数组在与数值进行运算时,具有广播特性。也就是说,数组中的每个元素都会进行同样的运算,这些运算包括“+、-、*、/、**、、|、^”等。
例如:array([1,2,3,4,5])*2 相当于array([1*2,2*2,3*2,4*2,5*2]), 代码示例如下。
对于维度相同的两个数组,将按照元素逐项进行运算。以‘*’为例:
已知
那么:
代码示例如下
对于维度不同的两个数组,则会进行广播运算, 例如
那么
我们知道对于向量
那么a与b的点积为:
在Numpy中,一维数组的点积(dot)和内积(inner)是相同的。但是对于多维数组来说,则有差别。inner运算中,可以将数组最后一个维度(行)视为向量,两个数组的内积就是逐项对这些向量的内积。而dot运算则是前一个数组雨后一个数组转置后的结果,即inner(a,b.T).
以上代码在Python 3.7中运行通过。
为什么NumPy数组如此高效
NumPy是Python科学计算的基础包。它提供了多维数组对象、基于数组的各种派生对象(例如,masked Array, 矩阵)。除此之外,还提供了各种各样的加快数组操作的例程,包括数学基本计算、逻辑、图形操作、排序、选择、输入输出,离散傅立叶变换、基础线性代数、基础统计操作、随机仿真等等。
NumPy的核心是ndarray对象。一方面,Ndarray对象封装了可以包含相同数据类型的多维数组;另一方面,为获得更好的性能, 在ndarray上的操作都是在编译过的代码上执行的。此外,和Python自身的序列对象相比,两者之间有如下不同:
1. NumPy数组的大小是固定的。Python的List是可以动态增长的。改变NumPy的大小会重新创建一个新的数组并把原来的删掉。
2. NumPy数组中的元素一定是同一类型的。(相应地,每个元素所占的内存大小也是一样的。)例外情况是:(不是特别理解:one can have arrays of (Python, including NumPy) objects, thereby allowing for arrays of different sized elements.)
3. NumPy数组支持在大量数据上进行数学计算和其他类型的操作。通常情况下,与Python自带的序列类型相比,NumPy数组上的操作执行更高效,代码量也更少。
4. 越来越多的Python科学计算包都是用到了NumPy的数组;虽然这些库支持Python序列类型的输入,但是内部操作还是要先将其转换为NumPy的数组类型,而且输出通常就是NumPy数组。所以,如果你想要高效地使用这些Python的科学计算包,仅仅知道Python内建的序列类型是不够的,你还需要知道如何使用NumPy数组。
最后,NumPy完全支持面向对象的范式。例如,ndarray是一个类,它拥有许多方法和属性。它的许多方法都映射到了最外层的NumPy命名空间的函数里。这样一来,就可以给程序员更多的自由:程序员可以自由选者是面向对象的方式还是面向过程的方式使用这些接口。
Python中numpy.array函数有啥作用呢?
答: 把我们定义的普通数组转化为Numpy中的array类型,这样做的好处就在于可以使用该类型定义的多种数组方法,比如排序取其中的最大值或者最小值。我们就不需要从头开始实现,直接调用相关的API就行。
python numpy是什么库
NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy内部解除了CPython的GIL(全局解释器锁),运行效率极好,是大量机器学习框架的基础库!
相关推荐:《Python基础教程》
NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包括:
·一个强大的N维数组对象ndrray;
·比较成熟的(广播)函数库;
·用于整合C/C++和Fortran代码的工具包;
·实用的线性代数、傅里叶变换和随机数生成函数。
NumPy的优点:
·对于同样的数值计算任务,使用NumPy要比直接编写Python代码便捷得多;
·NumPy中的数组的存储效率和输入输出性能均远远优于Python中等价的基本数据结构,且其能够提升的性能是与数组中的元素成比例的;
·NumPy的大部分代码都是用C语言写的,其底层算法在设计时就有着优异的性能,这使得NumPy比纯Python代码高效得多。
当然,NumPy也有其不足之处,由于NumPy使用内存映射文件以达到最优的数据读写性能,而内存的大小限制了其对TB级大文件的处理;此外,NumPy数组的通用性不及Python提供的list容器。因此,在科学计算之外的领域,NumPy的优势也就不那么明显。
什么是数组的维度?Pyston中NumPy数组怎样使用?
数组的维度就是一个数组中的某个元素,当用数组下标表示的时候,需要用几个数字来表示才能唯一确定这个元素,这个数组就是几维。numpy中直接用 * 即可表示数与向量的乘法,参考python 2.7的一个例子:inport numpy as np a = np.array([1,2,3,4]) # 向量 b = 5 # 数 print a*b ++++++++++++ [5,10,15,20]
NumPy数组的下标从0开始。
同一个NumPy数组中所有元素的类型必须是相同的。
在详细介绍NumPy数组之前。先详细介绍下NumPy数组的基本属性。NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。
比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是NumPy中的轴(axes),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。