您的位置:

Seldon-一个全方位的机器学习打包部署平台

一、sel动词英文

Seldon是一个云原生机器学习平台,为数据科学家和工程师提供了构建、部署和监控生产就绪机器学习模型的工具。Seldon的使命是为开发人员提供可靠的随时可用的部署,同时为数据科学家提供快速尝试、迭代和可重复生成的机器学习模型功能。使用Seldon可以轻松构建工业级机器学习应用程序,并在任何云上实现大规模微服务部署。

下面是一个使用Seldon构建机器学习模型的代码示例:

<?php
    require_once __DIR__ . '/../src/Seldon.php';

    // Initialize the Seldon object with your API key
    $seldon = new Seldon('
   ');
    
    // Define your model's metadata, input type and output type
    $model = array(
        'metadata' => array('name' => 'my-model'),
        'input_type' => 'tensor',
        'output_type' => 'tensor',
    );
    
    // Create the model on Seldon
    $seldon->models->create($model);
?>
   

二、seldom是什么意思

Seldom是一个Python库,它为Selenium WebDriver提供了一个友好的API,以进行Web UI测试。Seldom基于Selenium,并提供了更简洁、可读性更高的API,使测试代码更易于编写和维护。Seldom还支持测试用例的自动化运行,并提供了一组丰富的断言方法和测试报告。

下面是一个使用Seldom进行UI自动化测试的代码示例:

<?php
    require_once('vendor/autoload.php');
    
    use Selenium\Client;
    use Seldom\Seldom;

    // Create the Selenium client and connect to the browser
    $driver = new Client();
    $driver->connect('firefox', 'http://localhost:4444/wd/hub');

    // Create the Seldom object and set the Selenium client
    $seldom = new Seldom($driver);

    // Navigate to the test page
    $seldom->get('http://localhost/tests');

    // Open the dropdown menu
    $seldom->click('div.dropdown-toggle');

    // Click the "Logout" button
    $seldom->click('#logout-button');

    // Assert that the login page is displayed
    $seldom->assertContains('Login', $seldom->getTitle());

    // Close the browser and stop the Selenium client
    $driver->stop();
?>

三、seldon caused any problems

Seldon非常适合用于构建机器学习模型并将其部署到生产环境中。Seldon提供了完整的功能,包括模型版本控制、API版本控制、请求路由、A/B测试、自动缩放和监控。这些功能使Seldon成为一个全面而可靠的机器学习部署平台。

下面是一个使用Seldon部署机器学习模型并进行A/B测试的代码示例:

<?php
    require_once __DIR__ . '/../src/Seldon.php';

    // Initialize the Seldon object with your API key
    $seldon = new Seldon('
   ');

    // Define your model's metadata, input type and output type
    $model = array(
        'metadata' => array('name' => 'my-model'),
        'input_type' => 'tensor',
        'output_type' => 'tensor',
    );

    // Create the model on Seldon
    $seldon->models->create($model);

    // Define your A/B experiment's metadata, variants and test data
    $experiment = array(
        'metadata' => array('name' => 'my-experiment'),
        'variants' => array(
            'variant-a' => 0.5,
            'variant-b' => 0.5,
        ),
        'test_data' => array(
            array(1, 2, 3, 4, 5),
            array(6, 7, 8, 9, 10),
        ),
    );

    // Create the experiment on Seldon
    $seldon->experiments->create($experiment);

    // Send a request to the model's API endpoint with the test data
    $response = $seldon->predict(array(array(1, 2, 3, 4, 5)));

    // Extract the prediction from the response
    $prediction = $response['data']['tensor']['values'][0];

    // Print the prediction
    echo 'Prediction: ' . implode(', ', $prediction);
    
    // Close the experiment
    $seldon->experiments->close();
?>
   

四、seldon的中文意思

Seldon是一个基于Kubernetes的机器学习平台,它提供了构建、部署和管理生产级机器学习模型的完整功能。Seldon支持多种机器学习框架,包括TensorFlow、PyTorch和Scikit-learn,并提供了API管理、指标监控、日志记录等功能。

下面是一个使用Seldon构建机器学习模型并部署到Kubernetes集群的代码示例:

<?php
    require_once __DIR__ . '/../src/Seldon.php';

    // Initialize the Seldon object with your Kubernetes config file
    $seldon = new Seldon('
   ');

    // Define your model's metadata, input type and output type
    $model = array(
        'metadata' => array('name' => 'my-model'),
        'input_type' => 'tensor',
        'output_type' => 'tensor',
    );

    // Create the model on Seldon
    $seldon->models->create($model);

    // Define your deployment's metadata and spec
    $deployment = array(
        'metadata' => array('name' => 'my-deployment'),
        'spec' => array(
            'predictors' => array(
                array(
                    'name' => 'my-predictor',
                    'componentSpecs' => array(
                        array(
                            'spec' => array(
                                'containers' => array(
                                    array(
                                        'name' => 'my-container',
                                        'image' => 'my-image:latest',
                                        'env' => array(
                                            array('name' => 'MODEL_NAME', 'value' => 'my-model'),
                                            array('name' => 'API_TYPE', 'value' => 'REST'),
                                            array('name' => 'PREDICTIVE_UNIT_SERVICE_PORT', 'value' => '9000'),
                                        ),
                                        'resources' => array(
                                            'requests' => array(
                                                'memory' => '1Gi',
                                                'cpu' => '1',
                                            ),
                                            'limits' => array(
                                                'memory' => '2Gi',
                                                'cpu' => '2',
                                            ),
                                        ),
                                    ),
                                ),
                            ),
                        ),
                    ),
                    'graph' => array(
                        'name' => 'my-graph',
                        'type' => 'MODEL',
                        'endpoint' => array(
                            'type' => 'REST',
                        ),
                    ),
                    'replicas' => 1,
                ),
            ),
        ),
    );

    // Create the deployment on Seldon
    $seldon->deployments->create($deployment);

    // Send a request to the model's API endpoint with some test data
    $response = $seldon->predict(array(array(1, 2, 3, 4, 5)));

    // Extract the prediction from the response
    $prediction = $response['data']['tensor']['values'][0];

    // Print the prediction
    echo 'Prediction: ' . implode(', ', $prediction);

    // Delete the deployment and model
    $seldon->deployments->delete('my-deployment');
    $seldon->models->delete('my-model');
?>