一、sel动词英文
Seldon是一个云原生机器学习平台,为数据科学家和工程师提供了构建、部署和监控生产就绪机器学习模型的工具。Seldon的使命是为开发人员提供可靠的随时可用的部署,同时为数据科学家提供快速尝试、迭代和可重复生成的机器学习模型功能。使用Seldon可以轻松构建工业级机器学习应用程序,并在任何云上实现大规模微服务部署。
下面是一个使用Seldon构建机器学习模型的代码示例:
<?php
require_once __DIR__ . '/../src/Seldon.php';
// Initialize the Seldon object with your API key
$seldon = new Seldon('
');
// Define your model's metadata, input type and output type
$model = array(
'metadata' => array('name' => 'my-model'),
'input_type' => 'tensor',
'output_type' => 'tensor',
);
// Create the model on Seldon
$seldon->models->create($model);
?>
二、seldom是什么意思
Seldom是一个Python库,它为Selenium WebDriver提供了一个友好的API,以进行Web UI测试。Seldom基于Selenium,并提供了更简洁、可读性更高的API,使测试代码更易于编写和维护。Seldom还支持测试用例的自动化运行,并提供了一组丰富的断言方法和测试报告。
下面是一个使用Seldom进行UI自动化测试的代码示例:
<?php
require_once('vendor/autoload.php');
use Selenium\Client;
use Seldom\Seldom;
// Create the Selenium client and connect to the browser
$driver = new Client();
$driver->connect('firefox', 'http://localhost:4444/wd/hub');
// Create the Seldom object and set the Selenium client
$seldom = new Seldom($driver);
// Navigate to the test page
$seldom->get('http://localhost/tests');
// Open the dropdown menu
$seldom->click('div.dropdown-toggle');
// Click the "Logout" button
$seldom->click('#logout-button');
// Assert that the login page is displayed
$seldom->assertContains('Login', $seldom->getTitle());
// Close the browser and stop the Selenium client
$driver->stop();
?>
三、seldon caused any problems
Seldon非常适合用于构建机器学习模型并将其部署到生产环境中。Seldon提供了完整的功能,包括模型版本控制、API版本控制、请求路由、A/B测试、自动缩放和监控。这些功能使Seldon成为一个全面而可靠的机器学习部署平台。
下面是一个使用Seldon部署机器学习模型并进行A/B测试的代码示例:
<?php
require_once __DIR__ . '/../src/Seldon.php';
// Initialize the Seldon object with your API key
$seldon = new Seldon('
');
// Define your model's metadata, input type and output type
$model = array(
'metadata' => array('name' => 'my-model'),
'input_type' => 'tensor',
'output_type' => 'tensor',
);
// Create the model on Seldon
$seldon->models->create($model);
// Define your A/B experiment's metadata, variants and test data
$experiment = array(
'metadata' => array('name' => 'my-experiment'),
'variants' => array(
'variant-a' => 0.5,
'variant-b' => 0.5,
),
'test_data' => array(
array(1, 2, 3, 4, 5),
array(6, 7, 8, 9, 10),
),
);
// Create the experiment on Seldon
$seldon->experiments->create($experiment);
// Send a request to the model's API endpoint with the test data
$response = $seldon->predict(array(array(1, 2, 3, 4, 5)));
// Extract the prediction from the response
$prediction = $response['data']['tensor']['values'][0];
// Print the prediction
echo 'Prediction: ' . implode(', ', $prediction);
// Close the experiment
$seldon->experiments->close();
?>
四、seldon的中文意思
Seldon是一个基于Kubernetes的机器学习平台,它提供了构建、部署和管理生产级机器学习模型的完整功能。Seldon支持多种机器学习框架,包括TensorFlow、PyTorch和Scikit-learn,并提供了API管理、指标监控、日志记录等功能。
下面是一个使用Seldon构建机器学习模型并部署到Kubernetes集群的代码示例:
<?php
require_once __DIR__ . '/../src/Seldon.php';
// Initialize the Seldon object with your Kubernetes config file
$seldon = new Seldon('
');
// Define your model's metadata, input type and output type
$model = array(
'metadata' => array('name' => 'my-model'),
'input_type' => 'tensor',
'output_type' => 'tensor',
);
// Create the model on Seldon
$seldon->models->create($model);
// Define your deployment's metadata and spec
$deployment = array(
'metadata' => array('name' => 'my-deployment'),
'spec' => array(
'predictors' => array(
array(
'name' => 'my-predictor',
'componentSpecs' => array(
array(
'spec' => array(
'containers' => array(
array(
'name' => 'my-container',
'image' => 'my-image:latest',
'env' => array(
array('name' => 'MODEL_NAME', 'value' => 'my-model'),
array('name' => 'API_TYPE', 'value' => 'REST'),
array('name' => 'PREDICTIVE_UNIT_SERVICE_PORT', 'value' => '9000'),
),
'resources' => array(
'requests' => array(
'memory' => '1Gi',
'cpu' => '1',
),
'limits' => array(
'memory' => '2Gi',
'cpu' => '2',
),
),
),
),
),
),
),
'graph' => array(
'name' => 'my-graph',
'type' => 'MODEL',
'endpoint' => array(
'type' => 'REST',
),
),
'replicas' => 1,
),
),
),
);
// Create the deployment on Seldon
$seldon->deployments->create($deployment);
// Send a request to the model's API endpoint with some test data
$response = $seldon->predict(array(array(1, 2, 3, 4, 5)));
// Extract the prediction from the response
$prediction = $response['data']['tensor']['values'][0];
// Print the prediction
echo 'Prediction: ' . implode(', ', $prediction);
// Delete the deployment and model
$seldon->deployments->delete('my-deployment');
$seldon->models->delete('my-model');
?>