您的位置:

python关键字列合并,python 两个列表的dict合并为一个

本文目录一览:

在python中如何将两个list合并成一个list,不用for语句

1、运算符:

list1 = [1, 2, 3]

list2 = [4, 5, 6]

list3 = list1 + list2

print(list3)

2、extend()方法:

list1 = [1, 2, 3]

list2 = [4, 5, 6]

list3 = list1.extend(list2)

print(list3)

3、切片方式:

list1 = [1, 2, 3]

list2 = [4, 5, 6]

list1[len(list1):len(list1)] = list2

print(list1)

扩展资料:

list的方法

L.append(var)  #追加元素

L.insert(index,var)

L.pop(var)   #返回最后一个元素,并从list中删除之

L.remove(var)  #删除第一次出现的该元素

L.count(var)  #该元素在列表中出现的个数

L.index(var)  #该元素的位置,无则抛异常

L.extend(list) #追加list,即合并list到L上

L.sort()    #排序

L.reverse()   #倒序

list 操作符:,+,*,关键字del

a[1:]    #片段操作符,用于子list的提取

[1,2]+[3,4] #为[1,2,3,4]。同extend()

[2]*4    #为[2,2,2,2]

del L[1]  #删除指定下标的元素

del L[1:3] #删除指定下标范围的元素

万字干货,Python语法大合集,一篇文章带你入门

这份资料非常纯粹,只有Python的基础语法,专门针对想要学习Python的小白。

Python中用#表示单行注释,#之后的同行的内容都会被注释掉。

使用三个连续的双引号表示多行注释,两个多行注释标识之间内容会被视作是注释。

Python当中的数字定义和其他语言一样:

我们分别使用+, -, *, /表示加减乘除四则运算符。

这里要注意的是,在Python2当中,10/3这个操作会得到3,而不是3.33333。因为除数和被除数都是整数,所以Python会自动执行整数的计算,帮我们把得到的商取整。如果是10.0 / 3,就会得到3.33333。目前Python2已经不再维护了,可以不用关心其中的细节。

但问题是Python是一个 弱类型 的语言,如果我们在一个函数当中得到两个变量,是无法直接判断它们的类型的。这就导致了同样的计算符可能会得到不同的结果,这非常蛋疼。以至于程序员在运算除法的时候,往往都需要手工加上类型转化符,将被除数转成浮点数。

在Python3当中拨乱反正,修正了这个问题,即使是两个整数相除,并且可以整除的情况下,得到的结果也一定是浮点数。

如果我们想要得到整数,我们可以这么操作:

两个除号表示 取整除 ,Python会为我们保留去除余数的结果。

除了取整除操作之外还有取余数操作,数学上称为取模,Python中用%表示。

Python中支持 乘方运算 ,我们可以不用调用额外的函数,而使用**符号来完成:

当运算比较复杂的时候,我们可以用括号来强制改变运算顺序。

Python中用首字母大写的True和False表示真和假。

用and表示与操作,or表示或操作,not表示非操作。而不是C++或者是Java当中的, || 和!。

在Python底层, True和False其实是1和0 ,所以如果我们执行以下操作,是不会报错的,但是在逻辑上毫无意义。

我们用==判断相等的操作,可以看出来True==1, False == 0.

我们要小心Python当中的bool()这个函数,它并不是转成bool类型的意思。如果我们执行这个函数,那么 只有0会被视作是False,其他所有数值都是True :

Python中用==判断相等,表示大于,=表示大于等于, 表示小于,=表示小于等于,!=表示不等。

我们可以用and和or拼装各个逻辑运算:

注意not,and,or之间的优先级,其中not and or。如果分不清楚的话,可以用括号强行改变运行顺序。

关于list的判断,我们常用的判断有两种,一种是刚才介绍的==,还有一种是is。我们有时候也会简单实用is来判断,那么这两者有什么区别呢?我们来看下面的例子:

Python是全引用的语言,其中的对象都使用引用来表示。is判断的就是 两个引用是否指向同一个对象 ,而==则是判断两个引用指向的具体内容是否相等。举个例子,如果我们把引用比喻成地址的话,is就是判断两个变量的是否指向同一个地址,比如说都是沿河东路XX号。而==则是判断这两个地址的收件人是否都叫张三。

显然,住在同一个地址的人一定都叫张三,但是住在不同地址的两个人也可以都叫张三,也可以叫不同的名字。所以如果a is b,那么a == b一定成立,反之则不然。

Python当中对字符串的限制比较松, 双引号和单引号都可以表示字符串 ,看个人喜好使用单引号或者是双引号。我个人比较喜欢单引号,因为写起来方便。

字符串也支持+操作,表示两个字符串相连。除此之外,我们把两个字符串写在一起,即使没有+,Python也会为我们拼接:

我们可以使用[]来查找字符串当中某个位置的字符,用 len 来计算字符串的长度。

我们可以在字符串前面 加上f表示格式操作 ,并且在格式操作当中也支持运算,比如可以嵌套上len函数等。不过要注意,只有Python3.6以上的版本支持f操作。

最后是None的判断,在Python当中None也是一个对象, 所有为None的变量都会指向这个对象 。根据我们前面所说的,既然所有的None都指向同一个地址,我们需要判断一个变量是否是None的时候,可以使用is来进行判断,当然用==也是可以的,不过我们通常使用is。

理解了None之后,我们再回到之前介绍过的bool()函数,它的用途其实就是判断值是否是空。所有类型的 默认空值会被返回False ,否则都是True。比如0,"",[], {}, ()等。

除了上面这些值以外的所有值传入都会得到True。

Python当中的标准输入输出是 input和print 。

print会输出一个字符串,如果传入的不是字符串会自动调用__str__方法转成字符串进行输出。 默认输出会自动换行 ,如果想要以不同的字符结尾代替换行,可以传入end参数:

使用input时,Python会在命令行接收一行字符串作为输入。可以在input当中传入字符串,会被当成提示输出:

Python支持 三元表达式 ,但是语法和C++不同,使用if else结构,写成:

上段代码等价于:

Python中用[]表示空的list,我们也可以直接在其中填充元素进行初始化:

使用append和pop可以在list的末尾插入或者删除元素:

list可以通过[]加上下标访问指定位置的元素,如果是负数,则表示 倒序访问 。-1表示最后一个元素,-2表示倒数第二个,以此类推。如果访问的元素超过数组长度,则会出发 IndexError 的错误。

list支持切片操作,所谓的切片则是从原list当中 拷贝 出指定的一段。我们用start: end的格式来获取切片,注意,这是一个 左闭右开区间 。如果留空表示全部获取,我们也可以额外再加入一个参数表示步长,比如[1:5:2]表示从1号位置开始,步长为2获取元素。得到的结果为[1, 3]。如果步长设置成-1则代表反向遍历。

如果我们要指定一段区间倒序,则前面的start和end也需要反过来,例如我想要获取[3: 6]区间的倒序,应该写成[6:3:-1]。

只写一个:,表示全部拷贝,如果用is判断拷贝前后的list会得到False。可以使用del删除指定位置的元素,或者可以使用remove方法。

insert方法可以 指定位置插入元素 ,index方法可以查询某个元素第一次出现的下标。

list可以进行加法运算,两个list相加表示list当中的元素合并。 等价于使用extend 方法:

我们想要判断元素是否在list中出现,可以使用 in关键字 ,通过使用len计算list的长度:

tuple和list非常接近,tuple通过()初始化。和list不同, tuple是不可变对象 。也就是说tuple一旦生成不可以改变。如果我们修改tuple,会引发TypeError异常。

由于小括号是有改变优先级的含义,所以我们定义单个元素的tuple, 末尾必须加上逗号 ,否则会被当成是单个元素:

tuple支持list当中绝大部分操作:

我们可以用多个变量来解压一个tuple:

解释一下这行代码:

我们在b的前面加上了星号, 表示这是一个list 。所以Python会在将其他变量对应上值的情况下,将剩下的元素都赋值给b。

补充一点,tuple本身虽然是不可变的,但是 tuple当中的可变元素是可以改变的 。比如我们有这样一个tuple:

我们虽然不能往a当中添加或者删除元素,但是a当中含有一个list,我们可以改变这个list类型的元素,这并不会触发tuple的异常:

dict也是Python当中经常使用的容器,它等价于C++当中的map,即 存储key和value的键值对 。我们用{}表示一个dict,用:分隔key和value。

对 。我们用{}表示一个dict,用:分隔key和value。

dict的key必须为不可变对象,所以 list、set和dict不可以作为另一个dict的key ,否则会抛出异常:

我们同样用[]查找dict当中的元素,我们传入key,获得value,等价于get方法。

我们可以call dict当中的keys和values方法,获取dict当中的所有key和value的集合,会得到一个list。在Python3.7以下版本当中,返回的结果的顺序可能和插入顺序不同,在Python3.7及以上版本中,Python会保证返回的顺序和插入顺序一致:

我们也可以用in判断一个key是否在dict当中,注意只能判断key。

如果使用[]查找不存在的key,会引发KeyError的异常。如果使用 get方法则不会引起异常,只会得到一个None :

setdefault方法可以 为不存在的key 插入一个value,如果key已经存在,则不会覆盖它:

我们可以使用update方法用另外一个dict来更新当前dict,比如a.update(b)。对于a和b交集的key会被b覆盖,a当中不存在的key会被插入进来:

我们一样可以使用del删除dict当中的元素,同样只能传入key。

Python3.5以上的版本支持使用**来解压一个dict:

set是用来存储 不重复元素 的容器,当中的元素都是不同的,相同的元素会被删除。我们可以通过set(),或者通过{}来进行初始化。注意当我们使用{}的时候,必须要传入数据,否则Python会将它和dict弄混。

set当中的元素也必须是不可变对象,因此list不能传入set。

可以调用add方法为set插入元素:

set还可以被认为是集合,所以它还支持一些集合交叉并补的操作。

set还支持 超集和子集的判断 ,我们可以用大于等于和小于等于号判断一个set是不是另一个的超集或子集:

和dict一样,我们可以使用in判断元素在不在set当中。用copy可以拷贝一个set。

Python当中的判断语句非常简单,并且Python不支持switch,所以即使是多个条件,我们也只能 罗列if-else 。

我们可以用in来循环迭代一个list当中的内容,这也是Python当中基本的循环方式。

如果我们要循环一个范围,可以使用range。range加上一个参数表示从0开始的序列,比如range(10),表示[0, 10)区间内的所有整数:

如果我们传入两个参数,则 代表迭代区间的首尾 。

如果我们传入第三个元素,表示每次 循环变量自增的步长 。

如果使用enumerate函数,可以 同时迭代一个list的下标和元素 :

while循环和C++类似,当条件为True时执行,为false时退出。并且判断条件不需要加上括号:

Python当中使用 try和except捕获异常 ,我们可以在except后面限制异常的类型。如果有多个类型可以写多个except,还可以使用else语句表示其他所有的类型。finally语句内的语法 无论是否会触发异常都必定执行 :

在Python当中我们经常会使用资源,最常见的就是open打开一个文件。我们 打开了文件句柄就一定要关闭 ,但是如果我们手动来编码,经常会忘记执行close操作。并且如果文件异常,还会触发异常。这个时候我们可以使用with语句来代替这部分处理,使用with会 自动在with块执行结束或者是触发异常时关闭打开的资源 。

以下是with的几种用法和功能:

凡是可以使用in语句来迭代的对象都叫做 可迭代对象 ,它和迭代器不是一个含义。这里只有可迭代对象的介绍,想要了解迭代器的具体内容,请移步传送门:

Python——五分钟带你弄懂迭代器与生成器,夯实代码能力

当我们调用dict当中的keys方法的时候,返回的结果就是一个可迭代对象。

我们 不能使用下标来访问 可迭代对象,但我们可以用iter将它转化成迭代器,使用next关键字来获取下一个元素。也可以将它转化成list类型,变成一个list。

使用def关键字来定义函数,我们在传参的时候如果指定函数内的参数名, 可以不按照函数定义的顺序 传参:

可以在参数名之前加上*表示任意长度的参数,参数会被转化成list:

也可以指定任意长度的关键字参数,在参数前加上**表示接受一个dict:

当然我们也可以两个都用上,这样可以接受任何参数:

传入参数的时候我们也可以使用*和**来解压list或者是dict:

Python中的参数 可以返回多个值 :

函数内部定义的变量即使和全局变量重名,也 不会覆盖全局变量的值 。想要在函数内部使用全局变量,需要加上 global 关键字,表示这是一个全局变量:

Python支持 函数式编程 ,我们可以在一个函数内部返回一个函数:

Python中可以使用lambda表示 匿名函数 ,使用:作为分隔,:前面表示匿名函数的参数,:后面的是函数的返回值:

我们还可以将函数作为参数使用map和filter,实现元素的批量处理和过滤。关于Python中map、reduce和filter的使用,具体可以查看之前的文章:

五分钟带你了解map、reduce和filter

我们还可以结合循环和判断语来给list或者是dict进行初始化:

使用 import语句引入一个Python模块 ,我们可以用.来访问模块中的函数或者是类。

我们也可以使用from import的语句,单独引入模块内的函数或者是类,而不再需要写出完整路径。使用from import *可以引入模块内所有内容(不推荐这么干)

可以使用as给模块内的方法或者类起别名:

我们可以使用dir查看我们用的模块的路径:

这么做的原因是如果我们当前的路径下也有一个叫做math的Python文件,那么 会覆盖系统自带的math的模块 。这是尤其需要注意的,不小心会导致很多奇怪的bug。

我们来看一个完整的类,相关的介绍都在注释当中

以上内容的详细介绍之前也有过相关文章,可以查看:

Python—— slots ,property和对象命名规范

下面我们来看看Python当中类的使用:

这里解释一下,实例和对象可以理解成一个概念,实例的英文是instance,对象的英文是object。都是指类经过实例化之后得到的对象。

继承可以让子类 继承父类的变量以及方法 ,并且我们还可以在子类当中指定一些属于自己的特性,并且还可以重写父类的一些方法。一般我们会将不同的类放在不同的文件当中,使用import引入,一样可以实现继承。

我们创建一个蝙蝠类:

我们再创建一个蝙蝠侠的类,同时继承Superhero和Bat:

执行这个类:

我们可以通过yield关键字创建一个生成器,每次我们调用的时候执行到yield关键字处则停止。下次再次调用则还是从yield处开始往下执行:

除了yield之外,我们还可以使用()小括号来生成一个生成器:

关于生成器和迭代器更多的内容,可以查看下面这篇文章:

五分钟带你弄懂迭代器与生成器,夯实代码能力

我们引入functools当中的wraps之后,可以创建一个装饰器。装饰器可以在不修改函数内部代码的前提下,在外面包装一层其他的逻辑:

装饰器之前也有专门的文章详细介绍,可以移步下面的传送门:

一文搞定Python装饰器,看完面试不再慌

不知道有多少小伙伴可以看到结束,原作者的确非常厉害,把Python的基本操作基本上都囊括在里面了。如果都能读懂并且理解的话,那么Python这门语言就算是入门了。

如果你之前就有其他语言的语言基础,我想本文读完应该不用30分钟。当然在30分钟内学会一门语言是不可能的,也不是我所提倡的。但至少通过本文我们可以做到熟悉Python的语法,知道大概有哪些操作,剩下的就要我们亲自去写代码的时候去体会和运用了。

根据我的经验,在学习一门新语言的前期,不停地查阅资料是免不了的。希望本文可以作为你在使用Python时候的查阅文档。

最后,我这里有各种免费的编程类资料,有需要的及时私聊我,回复"学习",分享给大家,正在发放中............

Python Pandas——Read_csv详解

可以指定整个DataFrame或各个列的数据类型:

pandas提供了多种方法来确保列仅包含一个dtype。例如,可以使用read_csv()的converters参数:

或者,可以在读取数据后使用to_numeric()函数强进行类型转换。

可以通过指定dtype ='category'或dtype = CategoricalDtype(类别,有序)直接解析类别列。

可以使用dict指定将某列为Category类型:

指定dtype ='category'将导致无序分类,其类别是数据中观察到的唯一值。

要更好地控制类别和顺序,可以创建CategoricalDtype,然后将其传递给该列的dtype。

使用dtype = CategoricalDtype时,dtype.categories之外的“意外”值将被视为缺失值。

文件可能包含标题行,也可能没有标题行。 pandas假定第一行应用作列名:

通过指定name与header,可以重命名列以及是否丢弃标题行:

如果标题不在第一行中,则将行号传递给标题,将跳过header前面的行:

如果文件或标题包含重复的名称,默认情况下,pandas会将它们区分开,以防止覆盖数据.

usecols参数允许您使用列名,位置号或可调用的方法选择文件中列的任何子集.

如果指定了comment参数,则将忽略注释行。 默认情况下,空行也将被忽略。

如果skip_blank_lines = False,则read_csv将不会忽略空行:

警告:被忽略的行的存在可能会导致涉及行号的歧义; 参数标题使用行号(忽略注释/空行),而行首使用行号(包括注释/空行).

如果同时指定了skiprows和header,则header将相对于skiprows的末尾。 例如:

为了更好地使用日期时间数据,read_csv()使用关键字参数parse_dates和date_parser允许用户指定列的日期/时间格式,将string转换为日期时间对象。

通常,我们可能希望分别存储日期和时间数据,或分别存储各种日期字段。 parse_dates关键字可用于指定列的组合,以从中解析日期和/或时间。 您可以指定要parse_dates的列或嵌套列表,结果日期列将被添加到输出的前面(以便不影响现有的列顺序),新的列名为各列Name的连接。

默认情况下,解析器会删除组件日期列,可以选择通过keep_date_col关键字保留它们:

请注意,如果您希望将多个列合并为一个日期列,则必须使用嵌套列表。 换句话说,parse_dates = [1,2]表示第二和第三列应分别解析为单独的日期列,而parse_dates = [[1,2]]意味着应将这两列解析为单个列。

还可以使用字典来指定自定义名称列:

重要的是要记住,如果要将多个文本列解析为单个日期列,则在数据前添加一个新列。

index_col参数基于这组新列而不是原始数据列:

注意:如果列或索引包含不可解析的日期,则整个列或索引将作为对象数据类型原样返回。 对于非标准日期时间解析,请在pd.read_csv之后使用to_datetime()。

注意:read_csv具有用于解析iso8601格式的日期时间字符串的fast_path,例如“ 2000-01-01T00:01:02 + 00:00”和类似的变体。 如果可以安排数据以这种格式存储日期时间,则加载时间将明显缩短,约20倍。

最后,解析器允许您指定自定义date_parser函数,以充分利用日期解析API的灵活性:

Pandas不能原生表示具有混合时区的列或索引。 如果CSV文件包含带有时区混合的列,则默认结果将是带有字符串的object-dtype列,即使包含parse_dates。

要将混合时区值解析为datetime列,请将部分应用的to_datetime()传递给utc = True作为date_parser。

python关键字有哪些

paython的关键字有and、or、not(逻辑运算符);if、elif、else(条件语句);for、while(循环语句);True、False(布尔变量);continue、break(循环控制)等。

一、and、or、not(逻辑运算符)

and:如果两个语句都返回True,则返回值将仅为True,否则它将返回False。

or:如果其中一条语句返回True,则返回值为True,否则它将返回False。

not:如果语句不是True,则返回值为True,否则返回False。

二、if、elif、else(条件语句)

if:用于创建条件语句(if语句),并且仅当条件为True时,才允许执行if代码块。

elif:在条件语句(if语句)中使用,是else if的缩写。

else:在条件语句(if语句)中使用,并确定在if条件为False时该执行的代码。

三、for、while(循环语句)

for:用于创建一个for循环,它可以用来遍历序列,例如列表,元组等。

while:用于定义while循环,while循环将继续,直到while的条件为False。

四、True、False(布尔变量)

True:关键字True与1相同。

False:关键字False与0相同。

五、continue、break(循环控制)

continue:continue关键字用于在for循环(或while循环)中结束当前迭代,并继续进行下一个迭代。

break:break关键字用于中断for循环或while循环。

python如何根据关键字合并列表或词典中的数值

data = [['张三', 4], ['张三', 5], ['李四', 3], ['李四', 2], ['王五', 1]]

arr1 = set([k for k, v in data]) # 姓名去重 得到: {'王五', '李四', '张三'}

arr2 = [] # 设置一个空数组

for user in set(arr1): # 遍历去重后的数组 和 原数组对比 累加姓名相同的值

    arr2.append([user,sum([n for u, n in data if u == user])]) # 添加到arr2数组

print(arr2) # 输出结果:[['张三', 9], ['李四', 5], ['王五', 1]]

python的关键字有哪些,都是什么意思?

我这里汇总Python经常用到的27个关键字,希望对正在学Python的你能够起到帮助

1 and:逻辑与

2 as:为导入的模块取一个别名,在Python2.6中新增

3 assert:断言,在Python1.5新增

4 break:用在循环语句,跳转到语句块的末尾

5 class:用来定义一个类

6 continue:和break香对应,跳到语句块的开头

7 def:用来定义一个函数或方法

8 del:删除

9 elif:全称是else if

10 exec:内置函数。执行以string类型存储的Python代码

11 finally:用在异常处理语句try-excep-finally中

12 for:著名的for循环,可以用来遍历一个列表

13 from:字面意思,表示从一个包导入某个模块

14 global:在函数或其他局部作用域中使用全局变量

15 if:如果

16 import:导入

17 in:在,后面跟一个列表,字典或字符串

18 is:逻辑判断

19 not:逻辑非

20 or:逻辑或

21 pass:占位符,用来告诉Python这里不用考虑

22 print:写得最多的关键字,后来在Python3.0中变成了内置函数

23 raise:用来引发一个异常

24 return:函数返回

25 try:异常处理机制

26 while:while循环

27 with:在Python2.6中新增,使用with候不管with中的代码出现什么错误,都会进行对当前对象进行清理工作,注意该句话后面有一个冒号表示with语句。

以上就是我汇总的部分关键字,希望对你有所帮助