您的位置:

小话python的数据结构,python中常用的数据结构

本文目录一览:

一文搞懂python数据类型和结构

每次python从入门到精通都是从头开始看,做这个学习笔记主要是为了让自己可以省去学习数据类型和结构那几章的时间,所以“偷懒”可以促进生产力发展......

分别是: 整数型、浮点型、复数、常量、布尔型、字符串 。其中复数基本不会使用到,可以不用太关注

分别是 列表、字典、集合和元组 ,其中最常见并且工作中经常使用到的就是列表和字段,其他两个不常见。

02、字典

列表之外,字典可能是python中用的也比较多的数据结构了,由于字典的底层应用哈希映射,所以要求字典的所有key必须是不可变元素(可哈希对象),增删改查操作一般都能实现O(1)复杂度,是低复杂度的必备数据结构。

03、集合

集合(set)是一个无序的不重复元素序列。

可以使用大括号 { } 或者 set() 函数创建集合,注意:创建一个空集合必须用 set() 而不是 { },因为 { } 是用来创建一个空字典。

集合操作可能最常见于用于对列表去重,它的最大特性是各元素仅保留1次,底层也是应用了哈希函数,所以在集合中查找元素一般也可实现O(1)复杂度,同时集合的嵌套元素也要求是不可变类型(可哈希对象)

add:在集合中增加一个元素,如果元素已存在,则无实际操作

pop:不接受任何参数,堪称是最神秘的操作,不同于列表的从尾端删除、字典的指定键删除,集合的pop操作看似是"随机"删除。但实际上是按照加入集合的先后顺序,删除"最早"加入的元素

除了与列表和字典中类似的增删改操作外,集合还支持数学概念下的集合操作,如交集、并集、差集等。

04、元组

如果说列表、字典和集合都有其各自擅长应用场景的话,那么元组可能是最没有存在感的数据结构:它接口有限、功能单一,而且是不可变类型。一般而言,用元组解决的问题都可以用列表实现。但使用用元组时,更多在于暗示该序列为不可变类型。当然,当元组内嵌套子列表时实际上是可以对嵌套的子列表进行更改操作的。

有问题可以私信我,欢迎交流!

PYTHON的数据结构和算法介绍

当你听到数据结构时,你会想到什么?

数据结构是根据类型组织和分组数据的容器。它们基于可变性和顺序而不同。可变性是指创建后改变对象的能力。我们有两种类型的数据结构,内置数据结构和用户定义的数据结构。

什么是数据算法-是由计算机执行的一系列步骤,接受输入并将其转换为目标输出。

列表是用方括号定义的,包含用逗号分隔的数据。该列表是可变的和有序的。它可以包含不同数据类型的混合。

months=['january','february','march','april','may','june','july','august','september','october','november','december']

print(months[0])#print the element with index 0

print(months[0:7])#all the elements from index 0 to 6

months[0]='birthday #exchange the value in index 0 with the word birthday

print(months)

元组是另一种容器。它是不可变有序元素序列的数据类型。不可变的,因为你不能从元组中添加和删除元素,或者就地排序。

length, width, height =9,3,1 #We can assign multiple variables in one shot

print("The dimensions are {} * {} * {}".format(length, width, height))

一组

集合是唯一元素的可变且无序的集合。它可以让我们快速地从列表中删除重复项。

numbers=[1,2,3,4,6,3,3]

unique_nums = set(numbers)

print(unique_nums)

models ={'declan','gift','jabali','viola','kinya','nick',betty' }

print('davis' in models)#check if there is turner in the set models

models.add('davis')

print(model.pop())remove the last item#

字典

字典是可变和无序的数据结构。它允许存储一对项目(即键和值)

下面的例子显示了将容器包含到其他容器中来创建复合数据结构的可能性。

* 用户定义的数据结构*

使用数组的堆栈堆栈是一种线性数据结构,其中元素按顺序排列。它遵循L.I.F.O的机制,意思是后进先出。因此,最后插入的元素将作为第一个元素被删除。这些操作是:

溢出情况——当我们试图在一个已经有最大元素的堆栈中再放一个元素时,就会出现这种情况。

下溢情况——当我们试图从一个空堆栈中删除一个元素时,就会出现这种情况。

队列是一种线性数据结构,其中的元素按顺序排列。它遵循先进先出的F.I.F.O机制。

描述队列特征的方面

两端:

前端-指向起始元素。

指向最后一个元素。

有两种操作:

树用于定义层次结构。它从根节点开始,再往下,最后的节点称为子节点。

链表

它是具有一系列连接节点的线性数据。每个节点存储数据并显示到下一个节点的路由。它们用来实现撤销功能和动态内存分配。

图表

这是一种数据结构,它收集了具有连接到其他节点的数据的节点。

它包括:

算法

在算法方面,我不会讲得太深,只是陈述方法和类型:

原文:

python中的数据结构分析?

1.Python数据结构篇

数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introduction to Algorithms)

中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例

如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文

章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。

**这一部分是下

面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比

较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。**

(1)[搜索](Python Data Structures)

简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突)

(2)[排序](Python Data Structures)

简述各种排序算法的思想以及它的图示和实现

(3)[数据结构](Python Data Structures)

简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆

(4)[树总结](Python Data Structures)

简述二叉树,详述二叉搜索树和AVL树的思想和实现

2.Python算法设计篇

算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introduction to Algorithms),

内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排

序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并

没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但

是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来

了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过!

这里每篇文章都有实现代码,但是代码我一般都不会分

析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算

法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟

们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。

本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原著的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原著英文内容。

**1.

你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这

个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇

文章之后都还有一两道小题练手哟**

**2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂

不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科

普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵**

**3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~**

(1)[Python Algorithms - C1 Introduction](Python Algorithms)

本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。

(2)[Python Algorithms - C2 The basics](Python Algorithms)

**本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。**

(3)[Python Algorithms - C3 Counting 101](Python Algorithms)

原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法

(4)[Python Algorithms - C4 Induction and Recursion and Reduction](Python Algorithms)

**本节主要介绍算法设计的三个核心知识:Induction(推导)、Recursion(递归)和Reduction(规约),这是原书的重点和难点部分**

(5)[Python Algorithms - C5 Traversal](Python Algorithms)

**本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法**

(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)

**本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法**

(7)[Python Algorithms - C7 Greedy](Python Algorithms)

**本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等**

(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)

**本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比**

(9)[Python Algorithms - C9 Graphs](Python Algorithms)

**本节主要介绍图算法中的各种最短路径算法,从不同的角度揭示它们的内核以及它们的异同**