一、xDeepFM用法
xDeepFM是一种介于DNN和FM的算法,通过卷积神经网络(CNN)引入FM中交叉特征,这不仅可以解决FM中高阶交叉的问题,同时也能保留低阶交叉的特性,可以有效提高模型的预测准确率。
下面是一个简单的使用示例:
from deepctr.models import xDeepFM from deepctr.inputs import SparseFeat, DenseFeat, get_feature_names sparse_features = ['feature1', 'feature2', 'feature3', 'feature4'] dense_features = ['feature5', 'feature6'] # 生成训练样本 train_data = ... # 定义SparseFeat/DenseFeat类型 fixlen_feature_columns = [SparseFeat(feat, vocabulary_size=data[feat].nunique(),embedding_dim=4,) for feat in sparse_features] + [DenseFeat(feat, 1,) for feat in dense_features] # 将所有特征列转换为字典,方便模型训练 dnn_feature_columns = fixlen_feature_columns linear_feature_columns = fixlen_feature_columns feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns) # 定义模型并进行编译 model = xDeepFM(linear_feature_columns, dnn_feature_columns, task='binary') model.compile("adam", "binary_crossentropy", metrics=['binary_crossentropy']) # 训练模型 history = model.fit(train_model_input, train_label, batch_size=64, epochs=10, validation_split=0.2, )
二、xDeepFM之后的发展
xDeepFM的主要改进方向是优化CNN网络架构和提升特征交叉性能。其中,Efficient xDeepFM(EffxDeepFM)算法是基于xDeepFM的改进,通过增加channel-wise pooling和bottleneck layers来减小模型中的通道数,降低计算复杂度,同时优化特征交叉层的权重。此外,Deep&Cross Network(DCN)算法也是相似的,在原有DNN和Cross Network的基础上增加了residual connection,可以进一步提高模型的性能。
三、xDeepFM优劣
xDeepFM算法具有一下优势:
1、xDeepFM在FM模型中引入CNN网络,有效解决了传统FM算法中高阶特征交叉的过拟合问题;
2、xDeepFM能够保留低阶特征交叉的性质和信息,同时加入了高阶特征交叉,充分挖掘了特征之间的关系;
3、xDeepFM能够处理稀疏数据,并且能够自动学习特征权重,减少了人工特征的工作量;
4、xDeepFM能够支持多种任务,如分类和回归等。
xDeepFM的主要缺点包括:
1、xDeepFM模型相对比较复杂,需要较大的训练数据和计算资源;
2、xDeepFM算法的解释性相对较差,尤其是模型中的CNN网络部分。
四、xDeepFM怎么读
xDeepFM是由论文作者Jianxun Lian、Xiaohuan Zhou、Fuzheng Zhang、Zhongxia Chen共同提出的算法,xDeepFM的读法为“Ex-Deep-F-M”。
五、xDeepFM是什么
xDeepFM是一种基于交叉特征和卷积神经网络的模型,既保留了传统FM算法中低阶特征交叉的特性,又加入了卷积神经网络中高阶特征交叉,可以自动化学习特征之间的联系。xDeepFM算法可用于多种任务,如推荐、广告和搜索等。
六、xDeepFM预测广告
xDeepFM模型可以用于在线广告推荐模块,通过对广告素材的特征进行学习和预测,可以精准地将广告投放给感兴趣的人群。下面是一个使用xDeepFM预测广告点击率的示例:
from deepctr.models import xDeepFM from deepctr.inputs import SparseFeat, DenseFeat, get_feature_names sparse_features = ['user_id', 'ad_id', 'product_id', 'advertiser_id', 'industry'] dense_features = ['creative_id'] # 生成训练样本 train_data = ... # 定义SparseFeat/DenseFeat类型 fixlen_feature_columns = [SparseFeat(feat, vocabulary_size=data[feat].nunique(),embedding_dim=4,) for feat in sparse_features] + [DenseFeat(feat, 1,) for feat in dense_features] # 将所有特征列转换为字典,方便模型训练 dnn_feature_columns = fixlen_feature_columns linear_feature_columns = fixlen_feature_columns feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns) # 定义模型并进行编译 model = xDeepFM(linear_feature_columns, dnn_feature_columns, task='binary') model.compile("adam", "binary_crossentropy", metrics=['binary_crossentropy']) # 训练模型 history = model.fit(train_model_input, train_label, batch_size=64, epochs=10, validation_split=0.2, )
七、xDeepFM是哪一年的
xDeepFM算法于2018年由Jianxun Lian等人在论文《xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems》中提出。
八、xDeepFM推荐系统项目
xDeepFM算法可以应用于推荐系统,用于推荐产品和服务。下面是一个使用xDeepFM模型的推荐系统项目的示例:
from deepctr.models import xDeepFM from deepctr.inputs import SparseFeat, DenseFeat, get_feature_names sparse_features = ['user_id', 'item_id', 'category_id'] dense_features = ['score'] # 生成训练样本 train_data = ... # 定义SparseFeat/DenseFeat类型 fixlen_feature_columns = [SparseFeat(feat, vocabulary_size=data[feat].nunique(),embedding_dim=4,) for feat in sparse_features] + [DenseFeat(feat, 1,) for feat in dense_features] # 将所有特征列转换为字典,方便模型训练 dnn_feature_columns = fixlen_feature_columns linear_feature_columns = fixlen_feature_columns feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns) # 定义模型并进行编译 model = xDeepFM(linear_feature_columns, dnn_feature_columns, task='binary') model.compile("adam", "binary_crossentropy", metrics=['binary_crossentropy']) # 训练模型 history = model.fit(train_model_input, train_label, batch_size=64, epochs=10, validation_split=0.2, )
九、xDeepFM时间序列预测
xDeepFM模型也可以用于时间序列预测,例如预测股价或气温变化趋势等。下面是一个使用xDeepFM模型的时间序列预测示例:
from deepctr.models import xDeepFM from deepctr.inputs import SparseFeat, DenseFeat, get_feature_names sparse_features = ['datetime'] dense_features = ['feature1', 'feature2', 'feature3'] # 生成训练样本 train_data = ... # 定义SparseFeat/DenseFeat类型 fixlen_feature_columns = [SparseFeat(feat, vocabulary_size=data[feat].nunique(),embedding_dim=4,) for feat in sparse_features] + [DenseFeat(feat, 1,) for feat in dense_features] # 将所有特征列转换为字典,方便模型训练 dnn_feature_columns = fixlen_feature_columns linear_feature_columns = fixlen_feature_columns feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns) # 定义模型并进行编译 model = xDeepFM(linear_feature_columns, dnn_feature_columns, task='binary') model.compile("adam", "binary_crossentropy", metrics=['binary_crossentropy']) # 训练模型 history = model.fit(train_model_input, train_label, batch_size=64, epochs=10, validation_split=0.2, )
十、xDeepFM效果比DeepFM差吗
实验表明,与传统的DeepFM模型相比,xDeepFM算法可以显著提高模型预测准确率,如AUC、logloss和RMSE等指标,特别是在高纬稀疏场景下效果更加明显。因此,xDeepFM算法在推荐系统、广告和时间序列预测等任务中表现更好。