深入理解Seq2Seq模型

发布时间:2023-05-23

Seq2Seq模型介绍

一、什么是Seq2Seq模型?

Seq2Seq模型是一种基于神经网络的模型,特别适合处理带有时序信息的序列数据。其主要用途是将输入序列转换为输出序列,通常应用于机器翻译、对话系统、语音识别等领域。 Seq2Seq模型包括两个部分——Encoder和Decoder,其中Encoder用于对输入序列进行编码,生成一个向量表示;Decoder则用于利用Encoder生成的向量表示,生成输出序列。

import tensorflow as tf
# 定义Encoder
class Encoder(tf.keras.Model):
    def __init__(self, vocab_size, embedding_dim, enc_units, batch_size):
        super(Encoder, self).__init__()
        self.batch_size = batch_size
        self.enc_units = enc_units
        self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
        self.gru = tf.keras.layers.GRU(self.enc_units, 
                                       return_sequences=True, 
                                       return_state=True, 
                                       recurrent_initializer='glorot_uniform')
    def call(self, x, hidden):
        x = self.embedding(x)
        output, state = self.gru(x, initial_state = hidden)
        return output, state
    def initialize_hidden_state(self):
        return tf.zeros((self.batch_size, self.enc_units))
# 定义Decoder
class Decoder(tf.keras.Model):
    def __init__(self, vocab_size, embedding_dim, dec_units, batch_size):
        super(Decoder, self).__init__()
        self.batch_size = batch_size
        self.dec_units = dec_units
        self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
        self.gru = tf.keras.layers.GRU(self.dec_units, 
                                       return_sequences=True, 
                                       return_state=True, 
                                       recurrent_initializer='glorot_uniform')
        self.fc = tf.keras.layers.Dense(vocab_size)
        self.attention = BahdanauAttention(self.dec_units)
    def call(self, x, hidden, enc_output):
        context_vector, attention_weights = self.attention(hidden, enc_output)
        x = self.embedding(x)
        x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)
        output, state = self.gru(x)
        output = tf.reshape(output, (-1, output.shape[2]))
        x = self.fc(output)
        return x, state, attention_weights
# 定义Attention层
class BahdanauAttention(tf.keras.layers.Layer):
    def __init__(self, units):
        super(BahdanauAttention, self).__init__()
        self.W1 = tf.keras.layers.Dense(units)
        self.W2 = tf.keras.layers.Dense(units)
        self.V = tf.keras.layers.Dense(1)
    def call(self, query, values):
        # query是上一步Decoder的隐藏状态
        hidden_with_time_axis = tf.expand_dims(query, 1)
        # values是Encoder的所有输出
        score = self.V(tf.nn.tanh(
            self.W1(values) + self.W2(hidden_with_time_axis)))
        # 计算注意力权重
        attention_weights = tf.nn.softmax(score, axis=1)
        # 计算context向量
        context_vector = attention_weights * values
        context_vector = tf.reduce_sum(context_vector, axis=1)
        return context_vector, attention_weights

二、Seq2Seq模型的训练过程

在训练阶段,我们需要定义损失函数和优化器,通过反向传播使损失函数达到最小,进而得到模型的最优参数。 在Seq2Seq模型中,通常采用交叉熵损失函数;优化器方面常用的有Adam、RMSprop和SGD等。此外,为了增加模型的效果,还可以采用一些技巧,如Teacher Forcing和Scheduled Sampling。

# 定义损失函数和优化器
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
    from_logits=True, reduction='none')
def loss_function(real, pred):
    mask = tf.math.logical_not(tf.math.equal(real, 0))
    loss_ = loss_object(real, pred)
    mask = tf.cast(mask, dtype=loss_.dtype)
    loss_ *= mask
    return tf.reduce_mean(loss_)
optimizer = tf.keras.optimizers.Adam()
# 定义模型
encoder = Encoder(input_vocab_size, embedding_dim, units, BATCH_SIZE)
decoder = Decoder(output_vocab_size, embedding_dim, units, BATCH_SIZE)
# 定义训练步骤
@tf.function
def train_step(inp, targ, enc_hidden):
    loss = 0
    with tf.GradientTape() as tape:
        enc_output, enc_hidden = encoder(inp, enc_hidden)
        dec_hidden = enc_hidden
        dec_input = tf.expand_dims([targ_lang.word_index['<start>']] * BATCH_SIZE, 1)
        # Teacher Forcing - 将真实输出作为输入
        for t in range(1, targ.shape[1]):
            predictions, dec_hidden, _ = decoder(dec_input, dec_hidden, enc_output)
            loss += loss_function(targ[:, t], predictions)
            dec_input = tf.expand_dims(targ[:, t], 1)
    batch_loss = (loss / int(targ.shape[1]))
    variables = encoder.trainable_variables + decoder.trainable_variables
    gradients = tape.gradient(loss, variables)
    optimizer.apply_gradients(zip(gradients, variables))
    return batch_loss

三、Seq2Seq模型的应用

随着深度学习技术的不断发展,Seq2Seq模型的应用范围也越来越广泛。例如在机器翻译领域,我们可以使用Seq2Seq模型将一种语言翻译成另一种语言;在对话系统中,我们可以使用Seq2Seq模型回答用户的提问;在语音识别领域,我们可以使用Seq2Seq模型把语音信号转换成文字。

# 机器翻译示例
def evaluate(sentence):
    attention_plot = np.zeros((max_length_targ, max_length_inp))
    sentence = preprocess_sentence(sentence)
    inputs = [inp_lang.word_index[i] for i in sentence.split(' ')]
    inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs],
                                                            maxlen=max_length_inp,
                                                            padding='post')
    inputs = tf.convert_to_tensor(inputs)
    result = ''
    hidden = [tf.zeros((1, units))]
    enc_out, enc_hidden = encoder(inputs, hidden)
    dec_hidden = enc_hidden
    dec_input = tf.expand_dims([targ_lang.word_index['<start>']], 0)
    for t in range(max_length_targ):
        predictions, dec_hidden, attention_weights = decoder(dec_input, dec_hidden, enc_output)
        # 存储attention权重
        attention_weights = tf.reshape(attention_weights, (-1, ))
        attention_plot[t] = attention_weights.numpy()
        predicted_id = tf.argmax(predictions[0]).numpy()
        result += targ_lang.index_word[predicted_id] + ' '
        if targ_lang.index_word[predicted_id] == '<end>':
            return result, sentence, attention_plot
        # 把预测的结果作为下一步的输入
        dec_input = tf.expand_dims([predicted_id], 0)
    return result, sentence, attention_plot
def translate(sentence):
    result, sentence, attention_plot = evaluate(sentence)
    print('Input: %s' % (sentence))
    print('Predicted translation: {}'.format(result))