一、什么是Opencvfft
OpenCV是一个跨平台的计算机视觉库,其中包含了许多计算机视觉领域的算法。Opencvfft是OpenCV中用来实现快速傅里叶变换(FFT)的库。FFT主要用于信号处理、图像处理以及其他类似领域。Opencvfft库是基于快速傅里叶变换算法(FFT)实现的,效率非常高。它可用于对图像进行处理,例如滤波、边缘检测等。
二、Opencvfft的使用
Opencvfft的使用需要用到Opencv的Mat数据类型。可以认为Mat数据是一个多维数组,可以存储像素值。下面是一个计算二维FFT的例子:
Mat img = imread("lena.jpg", IMREAD_GRAYSCALE);
Mat planes[] = {Mat_<float>(img), Mat::zeros(img.size(), CV_32F)};
Mat complexImg;
merge(planes, 2, complexImg);
dft(complexImg, complexImg);
split(complexImg, planes);
magnitude(planes[0], planes[1], planes[0]);
Mat magImg = planes[0];
magImg += Scalar::all(1);
log(magImg, magImg);
magImg = magImg(Rect(0, 0, magImg.cols & -2, magImg.rows & -2));
int cx = magImg.cols/2;
int cy = magImg.rows/2;
Mat q0(magImg, Rect(0, 0, cx, cy));
Mat q1(magImg, Rect(cx, 0, cx, cy));
Mat q2(magImg, Rect(0, cy, cx, cy));
Mat q3(magImg, Rect(cx, cy, cx, cy));
Mat tmp;
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
normalize(magImg, magImg, 0, 255, CV_MINMAX);
imshow("spectrum magnitude", magImg);
waitKey();
三、Opencvfft的滤波应用
Opencvfft的另一个重要应用是滤波。图像经过傅里叶变换后,在频域上,可以很方便地作出滤波器。常见的滤波器包括低通滤波器和高通滤波器。下面是一个低通滤波器的例子:
Mat img = imread("lena.jpg", IMREAD_GRAYSCALE);
Mat padded;
int m = getOptimalDFTSize(img.rows);
int n = getOptimalDFTSize(img.cols);
copyMakeBorder(img, padded, 0, m - img.rows, 0, n - img.cols, BORDER_CONSTANT, Scalar::all(0));
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexImg;
merge(planes, 2, complexImg);
dft(complexImg, complexImg);
split(complexImg, planes);
namedWindow("Input", CV_WINDOW_AUTOSIZE);
imshow("Input", img);
int radius = 30;
int centerX = img.cols/2;
int centerY = img.rows/2;
for (int i = 0; i < planes[0].rows; i++) {
for (int j = 0; j < planes[0].cols; j++) {
int r = sqrt(pow(i - centerY, 2.0) + pow(j - centerX, 2.0));
if (r < radius) {
planes[0].at<float>(i, j) = planes[0].at<float>(i, j);
planes[1].at<float>(i, j) = planes[1].at<float>(i, j);
}
else {
planes[0].at<float>(i, j) = 0;
planes[1].at<float>(i, j) = 0;
}
}
}
merge(planes, 2, complexImg);
idft(complexImg, complexImg);
split(complexImg, planes);
normalize(planes[0], img, 0, 255, CV_MINMAX);
imshow("Output", img);
waitKey(0);
四、Opencvfft的性能
由于Opencvfft是基于FFT实现的,所以它的性能非常高。在相同的硬件环境下,使用Opencvfft的速度比使用传统方法的速度要快得多。下面是两种方法的时间比较:
Mat img = imread("lena.jpg", IMREAD_GRAYSCALE);
int m = getOptimalDFTSize(img.rows);
int n = getOptimalDFTSize(img.cols);
// 方法一:传统方法
Mat img1 = Mat::zeros(m, n, CV_32F);
for (int i = 0; i < img.rows; i++) {
for (int j = 0; j < img.cols; j++) {
img1.at<float>(i, j) = img.at<uchar>(i, j);
}
}
for (int i = 0; i < img1.rows; i++) {
for (int j = 0; j < img1.cols; j++) {
for (int u = 0; u < img1.rows; u++) {
for (int v = 0; v < img1.cols; v++) {
float tmp = img1.at<float>(i, j) * cos(2 * CV_PI * (float) (u * i / img1.rows + v * j / img1.cols)) -
img1.at<float>(i, j) * sin(2 * CV_PI * (float) (u * i / img1.rows + v * j / img1.cols));
}
}
}
}
// 方法二:Opencvfft
Mat img2 = Mat::zeros(m, n, CV_32F);
Mat planes[] = {Mat_<float>(img), Mat::zeros(img.size(), CV_32F)};
Mat complexImg;
merge(planes, 2, complexImg);
dft(complexImg, complexImg);
idft(complexImg, complexImg);
split(complexImg, planes);
for (int i = 0; i < img2.rows; i++) {
for (int j = 0; j < img2.cols; j++) {
img2.at<float>(i, j) = planes[0].at<float>(i, j);
}
}
// 方法一的计算时间
float t1 = (float)cv::getTickCount();
// ...
float t2 = (float)cv::getTickCount();
float time = (t2 - t1) / cv::getTickFrequency();
std::cout << "方法一的计算时间:" << time << std::endl;
// 方法二的计算时间
float t3 = (float)cv::getTickCount();
// ...
float t4 = (float)cv::getTickCount();
float time2 = (t4 - t3) / cv::getTickFrequency();
std::cout << "方法二的计算时间:" << time2 << std::endl;
实验结果表明,在相同的环境下,使用Opencvfft库的计算时间比普通方法少几个数量级。因此,在实际开发中,应尽可能采用Opencvfft库来实现FFT,以提高效率,节省时间。