本文目录一览:
- 1、C语言如何提高程序效率
- 2、c语言算法优化
- 3、如果C语言函数参数太多,可以怎么优化
- 4、C语言写程序提高程序效率减小空间的方法都有哪些
- 5、学习C语言的要领和技巧
- 6、C语言中有哪些实用的编程技巧
C语言如何提高程序效率
好的代码没有一个统一的衡量标准,在程序员们的世界里大家也是各自按照自己的标准衡量着自己和别人的代码。不过有一个标准几乎是被所有人认同的。服役时间越长、出错率越高的代码就是好代码。所有的编程方法、代码技巧甚至于设计模式都是为了达到这个目的而产生的。
如何提高程序效率
程序的效率分两部分:时间效率和空间效率。
时间效率 : 指的是程序运行的速度
空间效率 : 指的是程序占用内存或者外存的大小
对于这两点的把握,我们没有明确的方法。这里给出一些能够达成共识的规则,大家在今后自己编码的时候,可以通过这些规则来衡量自己的代码是否符合要求。
规则1:不要一味地追求程序的效率
如果追求程序效率需要付出降低正确性、可靠性、健壮性、可读性等质量代价,那么可以放弃这部分效率的提高。
规则2:优先提高全局效率
只有整个程序的执行效率提高才有意义,把时间和精力放在某一个不常被调用的小模块优化上得不偿失。
规则3:针对瓶颈部分优化
在实际开发工作中,我们经常遇到一些程序执行时间过长,需要优化。有些人上来就开始逐行检查代码,把认为可能影响效率的地方都尽量修改一遍。这样做不仅浪费时间,更重要的是,常常修改一遍后依然看不到明显的效果。
这种情况下,正确的方法是先找出限制效率的“瓶颈”,在这个部分做有针对性的优化。这么做才事半功倍。
规则4:先优化数据结构和算法,再优化执行代码
程序的两大要素是算法和数据结构,它们贯穿于程序的始终。因此,对它们的优化能够起到意想不到的良好效果。
规则5:时间效率和空间效率的矛盾
大多数时候,时间效率和空间效率是对立的。这就是程序设计中两个很重要的方法论,一个是“以空间换时间”,另一个是“以时间换空间”。此时应当分析那个更重要,作出适当的折中。
早间年,硬件成本比较高,人们大多都采用以时间换空间的策略,花费一些时间,减少内存开销。如今,内存条的价格已经非常便宜了,人们注重的`是软件的友好性,因此大部分时候都是用空间换时间。
规则6:代码不是越短越好
很多资深程序员都会有这样一个误区,完成同一个功能,代码越短越好。还经常有人说这样的话:“就这么个功能我几行代码就搞定了”。其实,追求代码精简是一个很大的误区。因为精简的代码并不一定产生高效的机器码。同时,它还付出了可读性这一代价。正确的做法是适当地做到代码精简。
注意事项
1. 书写错误
经常有人把“==”误写成“=”。“||”、“”、“=”、“=”这类符号也很容易发生少一个的错误。最可怕的是编译器根本发现不了这样的错误。
2. 初始化
变量(指针、数组)被创建之后应当立刻初始化,防止把未被初始化的变量当成右值使用。
3. 数值错误
这也是一类非常容易忽略的错误。变量的初值、缺省值错误,或精度不够,一旦出错不易发现。
4. 类型转换
为了避免数据类型转换的错误,我们要尽量使用显式的数据类型转换,避免在编译器中执行非我们所愿的隐式数据类型转换。
5. 溢出
溢出分两种,一种是超过数据类型取值范围的赋值,另一种是数组下标范围越界。这两种都是要时刻注意的。
7. 避免编写技巧性很高代码
技巧性过高的代码一定是可读性较差的代码,这种代码不易维护,后期的成本较高。
8. 好代码要复用,坏代码要重写
如果原有的代码质量比较好,尽量复用它。但是不要修补很差劲的代码。当我们遇到差劲代码时,最好的方法是重写新代码替换它。
9. 尽量使用标准库函数
对于标准库中有的函数,我们不要再花时间自己实现。很简单,你自己实现的一定不比库函数效率高。
10. 把编译器的选择项设置为最严格状态
只有最严格的审查自己的代码,才能写出优秀的软件产品。很多人甚至连编译过程中出现的warning都懒得处理,这种态度坚决不能有。
c语言算法优化
【算法描述】
转某牛人的解题报告!!!!
这道题在没看数据规模之前以为是一道简单的DP,但是数据开到十亿,无论在时间还是空间复杂度都过大,所以就要进行优化了。
解一:
简单方法:预期得分30。简单动态规划,f[i]代表青蛙跳到i点时所可能踩到的最少石子数,所以有f[i]=min{f[k]+map[i]}(i-s≤k≤i-t),其中map[i]代表i上是否有石子,有是1,否则0。算法复杂度O(n^2)。
解二:
改进方法:预期得分100。我们会发现,虽然桥很长,但上面最多只有100个石子,想到能否用石子DP,而应该是不行的。那能否基于第一种方法?由于石子排布非常的疏,我们还会发现,如果两个石子相隔甚远,那他们中间的f[i]大部分将会是同一个数,能否把两个石子的距离缩短,使之还与原来等效?要是行的话怎么缩?王乃岩同学考试时做了一个方法能够过全部数据,用的滚动数组存储,下面列出了他的程序。我自己也写了个程序,和他不尽相同:我令L=stone[i]-stone[i-1](stone[i]代表按坐标由小到大顺序排列的石块坐标),当L能够被t整除时(L%t==0),令k=t;当L不能被t整除时(L%t!=0),令k=L%t。然后令k为k+t,最后判断如果kL,那么map[]数组中stone[i]和stone[i-1]两石头的距离就被等效成为L(也就是没变);如果k=L,那么map[]数组中stone[i]和stone[i-1]两石头的距离就被等效成为k,可以看出来,这样处理完,两石子最大间距为2*t,大大的缩短了数组,再按解一进行DP,就可以通过了。
#include stdio.h
#include string.h
long stone[101];
int map[100001];
int f[100001];
long L;
int S, T, M;
void quickSort(int l, int r)
{
int i , j;
long temp;
i = l;
j = r;
temp = stone[i];
while (i j)
{
while (i j stone[j] temp)
j--;
if (i j)
{
stone[i] = stone[j];
i++;
}
while (i j stone[i] temp)
i++;
if (i j)
{
stone[j] = stone[i];
j--;
}
}
stone[i] = temp;
if (i - 1 l) quickSort(l, i - 1);
if (i + 1 r) quickSort(i + 1, r);
}
int main()
{
int i, j;
long l, k, p = 0, min;
scanf("%ld%d%d%d", L, S, T, M);
for (i = 1; i = M; i++)
scanf("%ld", stone[i]);
memset(map, 0, sizeof(int)*100001);
memset(f, 0, sizeof(int)*100001);
quickSort(1, M);
stone[0] = 0;
p = 0;
for (i = 1; i = M; i++)
{
l = stone[i] - stone[i - 1];
if (l % T == 0)
k = T;
else
k = l % T;
k = k + T;
if (l k)
k = l;
p = p + k;
map[p] = 1;
}
for (i = 1; i = p + T; i++)
{
min = 1000;
for (j = i - T; j = i - S; j++)
if ( j = 0 f[j] min)
min = f[j];
f[i] = min + map[i];
}
min = 1000;
for (i = p + 1; i = p + T; i++)
if (f[i] min)
min = f[i];
printf("%d\n", min);
return 0;
}
如果C语言函数参数太多,可以怎么优化
一个函数的参数的数目没有明确的限制,但是参数过多(例如超过8个)显然是一种不可取的编程风格。参数的数目直接影响调用函数的速度,参数越多,调用函数就越慢。另一方面,参数的数目少,程序就显得精练、简洁,这有助于检查和发现程序中的错误。因此,通常应该尽可能减少参数的数目,如果一个函数的参数超过4个,你就应该考虑一下函数是否编写得当。 如果一个函数不得不使用很多参数,你可以定义一个结构来容纳这些参数,这是一种非常好的解决方法。在下例中,函数print_report()需要使用10个参数,然而在它的说明中并没有列出这些参数,而是通过一个RPT_PARMS结构得到这些参数。 # include atdio. h typedef struct ( int orientation ; char rpt_name[25]; char rpt_path[40]; int destination; char output_file[25]; int starting_page; int ending_page; char db_name[25]; char db_path[40]; int draft_quality; )RPT_PARMS; void main (void); int print_report (RPT_PARMS* ); void main (void) { RPT_PARMS rpt_parm; /*define the report parameter structure variable * / /* set up the report parameter structure variable to pass to the print_report 0 function */ rpt_parm. orientation = ORIENT_LANDSCAPE; rpt_parm.rpt_name = "QSALES.RPT"; rpt_parm. rpt_path = "Ci\REPORTS" rpt_parm. destination == DEST_FILE; rpt_parm. output_file = "QSALES. TXT" ; rpt_parm. starting_page = 1; rpt_pann. ending_page = RPT_END; rpt_pann.db_name = "SALES. DB"; rpt_parm.db_path = "Ci\DATA"; rpt_pann. draft_quality = TRUE; /*call the print_report 0 function; paaaing it a pointer to the parameteM inatead of paMing it a long liat of 10 aeparate parameteM. * / ret_code = print_report(cu*pt_parm); } int print_report(RPT_PARMS*p) { int rc; /*acccM the report parametcra paaaed to the print_report() function */ oricnt_printcr(p-orientation); Kt_printer_quality((p-draft_quality == TRUE) ? DRAFT ; NORMAL); return rc; } 上例唯一的不足是编译程序无法检查引用print_report()函数时RPT_PARMS结构的10个成员是否符合要求。
C语言写程序提高程序效率减小空间的方法都有哪些
算法级别的显然是最主要的优化,一个平方级算法和一个超线性算法的时间复杂度天差地别。但如果已经达到了算法的下界,那么就只能是针对程序进行优化了。其实编译器干的坏事往往比好事多,尤其是在做并行的时候~另外,先检查下是否需要优化,如果不是瓶颈的地方再优化也没有明显效果,常用的优化手段一般是增大并行度,指令级或者线程级的,还有就是针对内存结构的特殊处理等等。具体可以参考计算机系统结构——量化研究方法,第三版我觉得不错,第四版没看。至于用C的话,比较灵活,比如自己消除递归,循环强度削弱,使用宏函数或者内联函数,内嵌汇编等等都可以,视情况而定了。
学习C语言的要领和技巧
从最基本的流程学起,从最基本的语句学起。
在学习的过程中,特别注意每个函数的作用,多想想这个函数能怎样用,用在哪里,能起到什么另外的效果!要学会活用!
程序,对数学,特别是逻辑的要求把比较高。
写好程序,首先对整个程序的流程有缜密的思考,要求周到,准确,先思考,不要急着写程序!!这一点请注意!也就是说先算法,先研究程序的结构,是用什么来实现的,循环?分支?等等。然后再用语言来实现!语言只是编写程序的工具。所以学语言,先学会程序化的思想。在将算法翻译成语言的时候,再结合实际情况,逐步求精,有目的的修改,达到最优化。
我们学院的C语言,很有特色,英文版,考试也是。我想说的就是,外文版的这本书,它在引领一个不懂编程的人,逐步养成程序、流程、逻辑的思想,是非常优秀的一本书。如果能字字句句阅读,将会很清楚领会到程序的思想。然而,书太厚,生词太多,时间太短。我的建议是,看某一本中文版的书,一本不够,看两本。先尽快学会程序的思想,也就是用程序来想问题,这样,就会编程了。然后,考试前几周,背一背生词、关键词,就可以考试了。如果你坚持要读外文版,可以,但要跳读!
然后,还要看你是想只是应付期末考试,还是想学好编程。应付期末考,需要注意书中的重点,也就是考点,这样就够了。比如说字符型变量加指针,这样就够了,不需要更高级的指针的知识。
而你如果想真正学好程序(我不说C语言是因为我说过C语言只是编写程序的工具之一),肯定是要打好基础的!任何一个细节,都是不能放过的!而且,这样的人往往会很郁闷~因为我们程序真正要求的,考试一般不会涉及到,因为比较难!(不会指针的人,永远不要说他会C语言!)而考试的内容,恰恰是最无聊的东西,比如格式化输出printf函数的第一个参数,太繁了,记都记不住。如果学的深的话,只需要知道有这么一个函数,有这么一个功能。而要用的时候,查书就行。可是对考试来说,显然不行。所以要看看你是哪一种~
C语言中有哪些实用的编程技巧
这篇文章主要介绍了C语言高效编程的几招小技巧,本文讲解了以空间换时间、用数学方法解决问题以及使用位操作等编辑技巧,并给出若干方法和代码实例,需要的朋友可以参考下
引言:
编写高效简洁的C语言代码,是许多软件工程师追求的目标。本文就工作中的一些体会和经验做相关的阐述,不对的地方请各位指教。
第1招:以空间换时间
计算机程序中最大的矛盾是空间和时间的矛盾,那么,从这个角度出发逆向思维来考虑程序的效率问题,我们就有了解决问题的第1招——以空间换时间。
例如:字符串的赋值。
方法A,通常的办法:
代码如下:
#define LEN 32
char string1 [LEN];
memset (string1,0,LEN);
strcpy (string1,“This is a example!!”);
方法B:
代码如下:
const char string2[LEN] =“This is a example!”;
char * cp;
cp = string2 ;
(使用的时候可以直接用指针来操作。)
从上面的例子可以看出,A和B的效率是不能比的。在同样的存储空间下,B直接使用指针就可以操作了,而A需要调用两个字符函数才能完成。B的缺点在于灵 活性没有A好。在需要频繁更改一个字符串内容的时候,A具有更好的灵活性;如果采用方法B,则需要预存许多字符串,虽然占用了大量的内存,但是获得了程序 执行的高效率。
如果系统的实时性要求很高,内存还有一些,那我推荐你使用该招数。
该招数的变招——使用宏函数而不是函数。举例如下:
方法C:
代码如下:
#define bwMCDR2_ADDRESS 4
#define bsMCDR2_ADDRESS 17
int BIT_MASK(int __bf)
{
return ((1U (bw ## __bf)) - 1) (bs ## __bf);
}
void SET_BITS(int __dst, int __bf, int __val)
{
__dst = ((__dst) ~(BIT_MASK(__bf))) | /
(((__val) (bs ## __bf)) (BIT_MASK(__bf))))
}
SET_BITS(MCDR2, MCDR2_ADDRESS, RegisterNumber);
方法D:
代码如下:
#define bwMCDR2_ADDRESS 4
#define bsMCDR2_ADDRESS 17
#define bmMCDR2_ADDRESS BIT_MASK(MCDR2_ADDRESS)
#define BIT_MASK(__bf) (((1U (bw ## __bf)) - 1) (bs ## __bf))
#define SET_BITS(__dst, __bf, __val) /
((__dst) = ((__dst) ~(BIT_MASK(__bf))) | /
(((__val) (bs ## __bf)) (BIT_MASK(__bf))))
SET_BITS(MCDR2, MCDR2_ADDRESS, RegisterNumber);
函数和宏函数的区别就在于,宏函数占用了大量的空间,而函数占用了时间。大家要知道的是,函数调用是要使用系统的栈来保存数据的,如果编译器里有栈检查 选项,一般在函数的头会嵌入一些汇编语句对当前栈进行检查;同时,CPU也要在函数调用时保存和恢复当前的现场,进行压栈和弹栈操作,所以,函数调用需要 一些CPU时间。而宏函数不存在这个问题。宏函数仅仅作为预先写好的代码嵌入到当前程序,不会产生函数调用,所以仅仅是占用了空间,在频繁调用同一个宏函 数的时候,该现象尤其突出。
D方法是我看到的最好的置位操作函数,是ARM公司源码的一部分,在短短的三行内实现了很多功能,几乎涵盖了所有的位操作功能。C方法是其变体,其中滋味还需大家仔细体会。
第2招:数学方法解决问题
现在我们演绎高效C语言编写的第二招——采用数学方法来解决问题。
数学是计算机之母,没有数学的依据和基础,就没有计算机的发展,所以在编写程序的时候,采用一些数学方法会对程序的执行效率有数量级的提高。
举例如下,求 1~100的和。
方法E
代码如下:
int I , j;
for (I = 1 ;I=100; I ++){
j += I;
}
方法F
代码如下:
int I;
I = (100 * (1+100)) / 2
这个例子是我印象最深的一个数学用例,是我的计算机启蒙老师考我的。当时我只有小学三年级,可惜我当时不知道用公式 N×(N+1)/ 2 来解决这个问题。方法E循环了100次才解决问题,也就是说最少用了100个赋值,100个判断,200个加法(I和j);而方法F仅仅用了1个加法,1 次乘法,1次除法。效果自然不言而喻。所以,现在我在编程序的时候,更多的是动脑筋找规律,最大限度地发挥数学的威力来提高程序运行的效率。
第3招:使用位操作
实现高效的C语言编写的第三招——使用位操作,减少除法和取模的运算。
在计算机程序中,数据的位是可以操作的最小数据单位,理论上可以用“位运算”来完成所有的运算和操作。一般的位操作是用来控制硬件的,或者做数据变换使用,但是,灵活的位操作可以有效地提高程序运行的效率。举例如下:
方法G
代码如下:
int I,J;
I = 257 /8;
J = 456 % 32;
方法H
int I,J;
I = 257 3;
J = 456 - (456 4 4);
在字面上好像H比G麻烦了好多,但是,仔细查看产生的汇编代码就会明白,方法G调用了基本的取模函数和除法函数,既有函数调用,还有很多汇编代码和寄存 器参与运算;而方法H则仅仅是几句相关的汇编,代码更简洁,效率更高。当然,由于编译器的不同,可能效率的差距不大,但是,以我目前遇到的MS C ,ARM C 来看,效率的差距还是不小。相关汇编代码就不在这里列举了。
运用这招需要注意的是,因为CPU的不同而产生的问题。比如说,在PC上用这招编写的程序,并在PC上调试通过,在移植到一个16位机平台上的时候,可能会产生代码隐患。所以只有在一定技术进阶的基础下才可以使用这招。
第4招:汇编嵌入
高效C语言编程的必杀技,第四招——嵌入汇编。
“在熟悉汇编语言的人眼里,C语言编写的程序都是垃圾”。这种说法虽然偏激了一些,但是却有它的道理。汇编语言是效率最高的计算机语言,但是,不可能靠着它来写一个操作系统吧?所以,为了获得程序的高效率,我们只好采用变通的方法 ——嵌入汇编,混合编程。
举例如下,将数组一赋值给数组二,要求每一字节都相符。
代码如下:
char string1[1024],string2[1024];
方法I
代码如下:
int I;
for (I =0 ;I1024;I++)
*(string2 + I) = *(string1 + I)
方法J
代码如下:
#ifdef _PC_
int I;
for (I =0 ;I1024;I++)
*(string2 + I) = *(string1 + I);
#else
#ifdef _ARM_
__asm
{
MOV R0,string1
MOV R1,string2
MOV R2,#0
loop:
LDMIA R0!, [R3-R11]
STMIA R1!, [R3-R11]
ADD R2,R2,#8
CMP R2, #400
BNE loop
}
#endif
方法I是最常见的方法,使用了1024次循环;方法J则根据平台不同做了区分,在ARM平台下,用嵌入汇编仅用128次循环就完成了同样的操作。这里有 朋友会说,为什么不用标准的内存拷贝函数呢?这是因为在源数据里可能含有数据为0的字节,这样的话,标准库函数会提前结束而不会完成我们要求的操作。这个 例程典型应用于LCD数据的拷贝过程。根据不同的CPU,熟练使用相应的嵌入汇编,可以大大提高程序执行的效率。
虽然是必杀技,但是如果轻易使用会付出惨重的代价。这是因为,使用了嵌入汇编,便限制了程序的可移植性,使程序在不同平台移植的过程中,卧虎藏龙,险象环生!同时该招数也与现代软件工程的思想相违背,只有在迫不得已的情况下才可以采用。切记,切记。