一、算法简介
Miller-Rabin算法是一种基于费马小定理的素性测试(Primality Test)算法,主要用于判断一个数是否为素数。算法时间复杂度为O(k*log^3(n)),其中k为测试次数,n为待测试的数。
与其它素性测试算法相比,Miller-Rabin算法不需要计算大数的因子,因此在实际应用中更加高效。同时,Miller-Rabin算法也被广泛应用于RSA算法和密码学领域中的其它问题。
二、算法思路
Miller-Rabin算法的核心思想是利用费马小定理:如果p是素数,a是p的任意正整数且a
我们可以使用上述式子来判断一个数是否为素数:首先随机选择一个小于该数的正整数a,将a^(n-1) mod n计算出来,若该值不等于1,则说明n为合数;反之,则继续进行下一轮测试。若经过多轮测试,n仍然没有被认定为合数,则说明n很可能是素数。
三、算法实现
在实现Miller-Rabin算法时,主要包括两个步骤:随机选择值a和测试n是否为素数。
// 随机选择a int rand_a(int n) { return rand() % (n - 2) + 2; } // 计算x的k次幂,并取模运算 int pow_mod(int x, int k, int p) { int ans = 1; while (k) { if (k & 1) ans = ans * x % p; x = x * x % p; k >>= 1; } return ans; } // Miller-Rabin算法 bool is_prime(int n, int test_cnt) { if (n < 2) return false; if (n == 2) return true; if (n % 2 == 0) return false; int m = n - 1; int k = 0; while (m % 2 == 0) { m >>= 1; k++; } for (int i = 0; i < test_cnt; i++) { int a = rand_a(n); int x = pow_mod(a, m, n); if (x == 1) continue; for (int j = 0; j < k; j++) { if (x == n - 1) break; x = pow_mod(x, 2, n); } if (x != n - 1) return false; } return true; }
四、算法分析
Miller-Rabin算法的正确性是基于费马小定理,即如果n为素数,则对于任意的a(1