本文目录一览:
MySQL - for update 行锁 表锁
for update 的作用是在查询的时候为行加上排它锁,当一个事务的操作未完成时候,其他事务可以读取但是不能写入或更新。
它的典型使用场景是 高并发并且对于数据的准确性有很高要求 ,比如金钱、库存等,一般这种操作都是很长一串并且开启事务的,假如现在要对库存进行操作,在刚开始读的时候是1,然后马上另外一个进程将库存更新为0了,但事务还没结束,会一直用1进行后续的逻辑,就会有问题,所以需要用for upate 加锁防止出错。
行锁的具体实现算法有三种:record lock、gap lock以及next-key lock。
只在可重复读或以上隔离级别下的特定操作才会取得 gap lock 或 next-key lock,在 Select、Update 和 Delete 时,除了基于唯一索引的查询之外,其它索引查询时都会获取 gap lock 或 next-key lock,即锁住其扫描的范围。主键索引也属于唯一索引,所以主键索引是不会使用 gap lock 或 next-key lock
for update 仅适用于InnoDB,并且必须开启事务,在begin与commit之间才生效。
select 语句默认不获取任何锁,所以是可以读被其它事务持有排它锁的数据的!
InnoDB 既实现了行锁,也实现了表锁。
当有明确指定的主键/索引时候,是行级锁,否则是表级锁
假设表 user,存在有id跟name字段,id是主键,有5条数据。
明确指定主键,并且有此记录,行级锁
无主键/索引,表级锁
主键/索引不明确,表级锁
明确指定主键/索引,若查无此记录,无锁
参考博文:
Java如何实现对Mysql数据库的行锁
下面通过一个例子来说明
场景如下:
用户账户有余额,当发生交易时,需要实时更新余额。这里如果发生并发问题,那么会造成用户余额和实际交易的不一致,这对公司和客户来说都是很危险的。
那么如何避免:
网上查了下,有以下两种方法:
1、使用悲观锁
当需要变更余额时,通过代码在事务中对当前需要更新的记录设置for update行锁,然后开始正常的查询和更新操作
这样,其他的事务只能等待该事务完成后方可操作
当然要特别注意,如果使用了Spring的事务注解,需要配置一下:
!-- (事务管理)transaction manager, use JtaTransactionManager for global tx --
bean id="transactionManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager"
property name="dataSource" ref="dataSource" /
/bean
!-- 使用annotation定义事务 --
tx:annotation-driven transaction-manager="transactionManager" /
在指定代码处添加事务注解
@Transactional
@Override
public boolean increaseBalanceByLock(Long userId, BigDecimal amount)
throws ValidateException {
long time = System.currentTimeMillis();
//获取对记录的锁定
UserBalance balance = userBalanceDao.getLock(userId);
LOGGER.info("[lock] start. time: {}", time);
if (null == balance) {
throw new ValidateException(
ValidateErrorCode.ERRORCODE_BALANCE_NOTEXIST,
"user balance is not exist");
}
boolean result = userBalanceDao.increaseBalanceByLock(balance, amount);
long timeEnd = System.currentTimeMillis();
LOGGER.info("[lock] end. time: {}", timeEnd);
return result;
}
MyBatis中的锁定方式,实际测试该方法确实可以有效控制,不过在大并发量的情况下,可能会有性能问题吧
select id="getLock" resultMap="BaseResultMap" parameterType="java.lang.Long"
![CDATA[
select * from user_balance where id=#{id,jdbcType=BIGINT} for update;
]]
/select
2、使用乐观锁
这个方法也同样可以解决场景中描述的问题(我认为比较适合并不频繁的操作):
设计表的时候增加一个version(版本控制字段),每次需要更新余额的时候,先获取对象,update的时候根据version和id为条件去更新,如果更新回来的数量为0,说明version已经变更
需要重复一次更新操作,如下:sql脚本
update user_balance set Balance = #{balance,jdbcType=DECIMAL},Version = Version+1 where Id = #{id,jdbcType=BIGINT} and Version = #{version,jdbcType=BIGINT}
这是一种不使用数据库锁的方法,解决方式也很巧妙。当然,在大量并发的情况下,一次扣款需要重复多次的操作才能成功,还是有不足之处的。不知道还有没有更好的方法。
用 MySQL 实现分布式锁,你听过吗?
以前参加过一个库存系统,由于其业务复杂性,搞了很多个应用来支撑。这样的话一份库存数据就有可能同时有多个应用来修改库存数据。
比如说,有定时任务域xx.cron,和SystemA域和SystemB域这几个JAVA应用,可能同时修改同一份库存数据。如果不做协调的话,就会有脏数据出现。
对于跨JAVA进程的线程协调,可以借助外部环境,例如DB或者Redis。下文介绍一下如何使用DB来实现分布式锁。
本文设计的分布式锁的交互方式如下:
在使用synchronized关键字的时候,必须指定一个锁对象。
进程内的线程可以基于obj来实现同步。obj在这里可以理解为一个锁对象。如果线程要进入synchronized代码块里,必须先持有obj对象上的锁。这种锁是JAVA里面的内置锁,创建的过程是线程安全的。那么借助DB,如何保证创建锁的过程是线程安全的呢?
可以利用DB中的UNIQUE KEY特性,一旦出现了重复的key,由于UNIQUE KEY的唯一性,会抛出异常的。在JAVA里面,是 SQLIntegrityConstraintViolationException 异常。
transaction_id是事务Id,比如说,可以用
来组装一个transaction_id,表示某仓库某销售模式下的某个条码资源。不同条码,当然就有不同的transaction_id。如果有两个应用,拿着相同的transaction_id来创建锁资源的时候,只能有一个应用创建成功。
在写操作频繁的业务系统中,通常会进行分库,以降低单数据库写入的压力,并提高写操作的吞吐量。如果使用了分库,那么业务数据自然也都分配到各个数据库上了。
在这种水平切分的多数据库上使用DB分布式锁,可以自定义一个DataSouce列表。并暴露一个 getConnection(String transactionId) 方法,按照transactionId找到对应的Connection。
实现代码如下:
首先编写一个initDataSourceList方法,并利用Spring的PostConstruct注解初始化一个DataSource 列表。相关的DB配置从db.properties读取。
DataSource使用阿里的DruidDataSource。
接着最重要的一个实现getConnection(String transactionId)方法。实现原理很简单,获取transactionId的hashcode,并对DataSource的长度取模即可。
连接池列表设计好后,就可以实现往distributed_lock表插入数据了。
接下来利用DB的 select for update 特性来锁住线程。当多个线程根据相同的transactionId并发同时操作 select for update 的时候,只有一个线程能成功,其他线程都block住,直到 select for update 成功的线程使用commit操作后,block住的所有线程的其中一个线程才能开始干活。
我们在上面的DistributedLock类中创建一个lock方法。
当线程执行完任务后,必须手动的执行解锁操作,之前被锁住的线程才能继续干活。在我们上面的实现中,其实就是获取到当时 select for update 成功的线程对应的Connection,并实行commit操作即可。
那么如何获取到呢?我们可以利用ThreadLocal。首先在DistributedLock类中定义
每次调用lock方法的时候,把Connection放置到ThreadLocal里面。我们修改lock方法。
这样子,当获取到Connection后,将其设置到ThreadLocal中,如果lock方法出现异常,则将其从ThreadLocal中移除掉。
有了这几步后,我们可以来实现解锁操作了。我们在DistributedLock添加一个unlock方法。
毕竟是利用DB来实现分布式锁,对DB还是造成一定的压力。当时考虑使用DB做分布式的一个重要原因是,我们的应用是后端应用,平时流量不大的,反而关键的是要保证库存数据的正确性。对于像前端库存系统,比如添加购物车占用库存等操作,最好别使用DB来实现分布式锁了。
如果想锁住多份数据该怎么实现?比如说,某个库存操作,既要修改物理库存,又要修改虚拟库存,想锁住物理库存的同时,又锁住虚拟库存。其实也不是很难,参考lock方法,写一个multiLock方法,提供多个transactionId的入参,for循环处理就可以了。这个后续有时间再补上。