本文目录一览:
浅谈数据库查询优化的几种思路
应尽量避免全表扫描,首先应考虑在 where 及 order by ,group by 涉及的列上建立索引
可以帮助选择更好的索引和优化查询语句, 写出更好的优化语句。 通常我们可以对比较复杂的尤其是涉及到多表的 SELECT 语句, 把关键字 EXPLAIN 加到前面, 查看执行计划。例如: explain select * from news;
用具体的字段列表代替“*” , 不要返回用不到的任何字段。
mysql innodb上的理解。
1,不需要的字段会增加数据传输的时间,即使mysql服务器和客户端是在同一台机器上,使用的协议还是tcp,通信也是需要额外的时间。
2,要取的字段、索引的类型,和这两个也是有关系的。举个例子,对于user表,有name和phone的联合索引,select name from user where phone= 12345678912 和 select * from user where phone= 12345678912 ,前者要比后者的速度快,因为name可以在索引上直接拿到,不再需要读取这条记录了。
3,大字段,例如很长的varchar,blob,text。准确来说,长度超过728字节的时候,会把超出的数据放到另外一个地方,因此读取这条记录会增加一次io操作。
比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’);
使用 procedure analyse()函数对表进行分析, 该函数可以对表中列的数据类型提出优化建议。 能小就用小。 表数据类型第一个原则是: 使用能正确的表示和存储数据的最短类型。 这样可以减少对磁盘空间、 内存、 cpu 缓存的使用。
使用方法: select * from 表名 procedure analyse();
通过拆分表可以提高表的访问效率。 有 2 种拆分方法
1.垂直拆分
把主键和一些列放在一个表中, 然后把主键和另外的列放在另一个表中。 如果一个表中某些列常用, 而另外一些不常用, 则可以采用垂直拆分。
2.水平拆分
根据一列或者多列数据的值把数据行放到二个独立的表中。
创建中间表, 表结构和源表结构完全相同, 转移要统计的数据到中间表, 然后在中间表上进行统计, 得出想要的结果。
选择多核和主频高的 CPU。
使用更大的内存。 将尽量多的内存分配给 MYSQL 做缓存。
4.3.1 使用磁盘阵列
RAID 0 没有数据冗余, 没有数据校验的磁盘陈列。 实现 RAID 0至少需要两块以上的硬盘, 它将两块以上的硬盘合并成一块, 数据连续地分割在每块盘上。
RAID1 是将一个两块硬盘所构成 RAID 磁盘阵列, 其容量仅等于一块硬盘的容量, 因为另一块只是当作数据“镜像”。使用 RAID-0+1 磁盘阵列。 RAID 0+1 是 RAID 0 和 RAID 1 的组合形式。 它在提供与 RAID 1 一样的数据安全保障的同时, 也提供了与 RAID 0 近似的存储性能。
4.3.2 调整磁盘调度算法
选择合适的磁盘调度算法, 可以减少磁盘的寻道时间
对 MySQL 自身的优化主要是对其配置文件 my.cnf 中的各项参数进行优化调整。 如指定 MySQL 查询缓冲区的大小, 指定 MySQL 允许的最大连接进程数等。
它的作用是存储 select 查询的文本及其相应结果。 如果随后收到一个相同的查询, 服务器会从查询缓存中直接得到查询结果。 查询缓存适用的对象是更新不频繁的表, 当表中数据更改后, 查询缓存中的相关条目就会被清空。
北大青鸟java培训:mysql数据库的优化方法?
我们都知道,服务器数据库的开发一般都是通过java或者是PHP语言来编程实现的,而为了提高我们数据库的运行速度和效率,数据库优化也成为了我们每日的工作重点,今天,福建IT培训就一起来了解一下mysql服务器数据库的优化方法。
为什么要了解索引真实案例案例一:大学有段时间学习爬虫,爬取了知乎300w用户答题数据,存储到mysql数据中。
那时不了解索引,一条简单的“根据用户名搜索全部回答的sql“需要执行半分钟左右,完全满足不了正常的使用。
案例二:近线上应用的数据库频频出现多条慢sql风险提示,而工作以来,对数据库优化方面所知甚少。
例如一个用户数据页面需要执行很多次数据库查询,性能很慢,通过增加超时时间勉强可以访问,但是性能上需要优化。
索引的优点合适的索引,可以大大减小mysql服务器扫描的数据量,避免内存排序和临时表,提高应用程序的查询性能。
索引的类型mysql数据中有多种索引类型,primarykey,unique,normal,但底层存储的数据结构都是BTREE;有些存储引擎还提供hash索引,全文索引。
BTREE是常见的优化要面对的索引结构,都是基于BTREE的讨论。
B-TREE查询数据简单暴力的方式是遍历所有记录;如果数据不重复,就可以通过组织成一颗排序二叉树,通过二分查找算法来查询,大大提高查询性能。
而BTREE是一种更强大的排序树,支持多个分支,高度更低,数据的插入、删除、更新更快。
现代数据库的索引文件和文件系统的文件块都被组织成BTREE。
btree的每个节点都包含有key,data和只想子节点指针。
btree有度的概念d=1。
假设btree的度为d,则每个内部节点可以有n=[d+1,2d+1)个key,n+1个子节点指针。
树的大高度为h=Logb[(N+1)/2]。
索引和文件系统中,B-TREE的节点常设计成接近一个内存页大小(也是磁盘扇区大小),且树的度非常大。
这样磁盘I/O的次数,就等于树的高度h。
假设b=100,一百万个节点的树,h将只有3层。
即,只有3次磁盘I/O就可以查找完毕,性能非常高。
索引查询建立索引后,合适的查询语句才能大发挥索引的优势。
另外,由于查询优化器可以解析客户端的sql语句,会调整sql的查询语句的条件顺序去匹配合适的索引。
超详细MySQL数据库优化
数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷.
1. 优化一览图
2. 优化
笔者将优化分为了两大类,软优化和硬优化,软优化一般是操作数据库即可,而硬优化则是操作服务器硬件及参数设置.
2.1 软优化
2.1.1 查询语句优化
1.首先我们可以用EXPLAIN或DESCRIBE(简写:DESC)命令分析一条查询语句的执行信息.
2.例:
显示:
其中会显示索引和查询数据读取数据条数等信息.
2.1.2 优化子查询
在MySQL中,尽量使用JOIN来代替子查询.因为子查询需要嵌套查询,嵌套查询时会建立一张临时表,临时表的建立和删除都会有较大的系统开销,而连接查询不会创建临时表,因此效率比嵌套子查询高.
2.1.3 使用索引
索引是提高数据库查询速度最重要的方法之一,关于索引可以参高笔者MySQL数据库索引一文,介绍比较详细,此处记录使用索引的三大注意事项:
2.1.4 分解表
对于字段较多的表,如果某些字段使用频率较低,此时应当,将其分离出来从而形成新的表,
2.1.5 中间表
对于将大量连接查询的表可以创建中间表,从而减少在查询时造成的连接耗时.
2.1.6 增加冗余字段
类似于创建中间表,增加冗余也是为了减少连接查询.
2.1.7 分析表,,检查表,优化表
分析表主要是分析表中关键字的分布,检查表主要是检查表中是否存在错误,优化表主要是消除删除或更新造成的表空间浪费.
1. 分析表: 使用 ANALYZE 关键字,如ANALYZE TABLE user;
2. 检查表: 使用 CHECK关键字,如CHECK TABLE user [option]
option 只对MyISAM有效,共五个参数值:
3. 优化表:使用OPTIMIZE关键字,如OPTIMIZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE user;
LOCAL|NO_WRITE_TO_BINLOG都是表示不写入日志.,优化表只对VARCHAR,BLOB和TEXT有效,通过OPTIMIZE TABLE语句可以消除文件碎片,在执行过程中会加上只读锁.
2.2 硬优化
2.2.1 硬件三件套
1.配置多核心和频率高的cpu,多核心可以执行多个线程.
2.配置大内存,提高内存,即可提高缓存区容量,因此能减少磁盘I/O时间,从而提高响应速度.
3.配置高速磁盘或合理分布磁盘:高速磁盘提高I/O,分布磁盘能提高并行操作的能力.
2.2.2 优化数据库参数
优化数据库参数可以提高资源利用率,从而提高MySQL服务器性能.MySQL服务的配置参数都在my.cnf或my.ini,下面列出性能影响较大的几个参数.
2.2.3 分库分表
因为数据库压力过大,首先一个问题就是高峰期系统性能可能会降低,因为数据库负载过高对性能会有影响。另外一个,压力过大把你的数据库给搞挂了怎么办?所以此时你必须得对系统做分库分表 + 读写分离,也就是把一个库拆分为多个库,部署在多个数据库服务上,这时作为主库承载写入请求。然后每个主库都挂载至少一个从库,由从库来承载读请求。
2.2.4 缓存集群
如果用户量越来越大,此时你可以不停的加机器,比如说系统层面不停加机器,就可以承载更高的并发请求。然后数据库层面如果写入并发越来越高,就扩容加数据库服务器,通过分库分表是可以支持扩容机器的,如果数据库层面的读并发越来越高,就扩容加更多的从库。但是这里有一个很大的问题:数据库其实本身不是用来承载高并发请求的,所以通常来说,数据库单机每秒承载的并发就在几千的数量级,而且数据库使用的机器都是比较高配置,比较昂贵的机器,成本很高。如果你就是简单的不停的加机器,其实是不对的。所以在高并发架构里通常都有缓存这个环节,缓存系统的设计就是为了承载高并发而生。所以单机承载的并发量都在每秒几万,甚至每秒数十万,对高并发的承载能力比数据库系统要高出一到两个数量级。所以你完全可以根据系统的业务特性,对那种写少读多的请求,引入缓存集群。具体来说,就是在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求。这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。
一个完整而复杂的高并发系统架构中,一定会包含:各种复杂的自研基础架构系统。各种精妙的架构设计.因此一篇小文顶多具有抛砖引玉的效果,但是数据库优化的思想差不多就这些了.