您的位置:

python爬虫伪造ua字符串,python ua伪装

本文目录一览:

如何使用python解决网站的反爬虫

1、从用户请求的Headers反爬虫是最常见的反爬虫策略。

伪装header。很多网站都会对Headers的User-Agent进行检测,还有一部分网站会对Referer进行检测(一些资源网站的防盗链就是检测Referer)。如果遇到了这类反爬虫机制,可以直接在爬虫中添加Headers,将浏览器的User-Agent复制到爬虫的Headers中;或者将Referer值修改为目标网站域名[评论:往往容易被忽略,通过对请求的抓包分析,确定referer,在程序中模拟访问请求头中添加]。对于检测Headers的反爬虫,在爬虫中修改或者添加Headers就能很好的绕过。

2、基于用户行为反爬虫

还有一部分网站是通过检测用户行为,例如同一IP短时间内多次访问同一页面,或者同一账户短时间内多次进行相同操作。[这种防爬,需要有足够多的ip来应对]

(1)、大多数网站都是前一种情况,对于这种情况,使用IP代理就可以解决。可以专门写一个爬虫,爬取网上公开的代理ip,检测后全部保存起来。有了大量代理ip后可以每请求几次更换一个ip,这在requests或者urllib中很容易做到,这样就能很容易的绕过第一种反爬虫。

编写爬虫代理:

步骤:

1.参数是一个字典{'类型':'代理ip:端口号'}

proxy_support=urllib.request.ProxyHandler({})

2.定制、创建一个opener

opener=urllib.request.build_opener(proxy_support)

3a.安装opener

urllib.request.install_opener(opener)

3b.调用opener

opener.open(url)

用大量代理随机请求目标网站,应对反爬虫

python爬虫有什么办法防止反爬虫

动态页面的限制,爬虫工作者可能会遇到这样的尴尬,当你抓取下目标页面之后,你发现,关键信息处一片空白,只有密密麻麻一片的框架代码,这是因为该网站的信息是通过用户Post的XHR动态返回内容信息,解决这种问题就是要通过开发者工具(FireBug等)对网站流进行分析,对内容信息进行抓取,获取所需要的内容。

用户行为检测,有一些是网站通过检测和分析一些用户的行为,比如说是针对cookies,通过检查cookies来判断用户是不是可以利用和保存的有效客户,通常是需要登陆的网站,经常会采用这样的技术。层次再深的还有,信息验证,部分网站的登陆是需要验证吗的验证的,就像登陆的时候,系统会自动分配出验证码,authenticity_token,authenticity_token会和用户提交的登录名和密码一起发送回服务器。

IP的访问频率被限制,一些平台为了防止多次访问网站,会在某个同一个IP在单元时间内超过一定的次数的时候,将禁止这个IP继续访问。对于这个限制IP访问效率,可以使用代理IP的方法来解决问题比如使用IPIDEA。

以上简单的说了三种常见的反爬虫已经反爬虫的应对方法,一般来讲越高级的爬虫被封锁的机率救会越低,但是性能会比较低一些。

python爬虫项目实战:爬取用户的所有信息,如性别、年龄等

python爬虫项目实战:

爬取糗事百科用户的所有信息,包括用户名、性别、年龄、内容等等。

10个步骤实现项目功能,下面开始实例讲解:

1.导入模块

import re

import urllib.request

from bs4 import BeautifulSoup

2.添加头文件,防止爬取过程被拒绝链接

def qiuShi(url,page):

################### 模拟成高仿度浏览器的行为 ##############

heads ={

'Connection':'keep-alive',

'Accept-Language':'zh-CN,zh;q=0.9',

'Accept':'text/html,application/xhtml+xml,application/xml;

q=0.9,image/webp,image/apng, / ;q=0.8',

'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36',

}

headall = []

for key,value in heads.items():

items = (key,value)

headall.append(items)

opener = urllib.request.build_opener()

opener.addheaders = headall

urllib.request.install_opener(opener)

data = opener.open(url).read().decode()

################## end ########################################

3.创建soup解析器对象

soup = BeautifulSoup(data,'lxml')

x = 0

4.开始使用BeautifulSoup4解析器提取用户名信息

############### 获取用户名 ########################

name = []

unames = soup.find_all('h2')

for uname in unames:

name.append(uname.get_text())

#################end#############################

5.提取发表的内容信息

############## 发表的内容 #########################

cont = []

data4 = soup.find_all('div',class_='content')

data4 = str(data4)

soup3 = BeautifulSoup(data4,'lxml')

contents = soup3.find_all('span')

for content in contents:

cont.append(content.get_text())

##############end####################################

6.提取搞笑指数

#################搞笑指数##########################

happy = []

data2 = soup.find_all('span',class_="stats-vote")

data2 = str(data2) # 将列表转换成字符串形式才可以使用

soup1 = BeautifulSoup(data2,'lxml')

happynumbers = soup1.find_all('i',class_="number")

for happynumber in happynumbers:

happy.append(happynumber.get_text())

##################end#############################

7.提取评论数

############## 评论数 ############################

comm = []

data3 = soup.find_all('a',class_='qiushi_comments')

data3 = str(data3)

soup2 = BeautifulSoup(data3,'lxml')

comments = soup2.find_all('i',class_="number")

for comment in comments:

comm.append(comment.get_text())

############end#####################################

8.使用正则表达式提取性别和年龄

######## 获取性别和年龄 ##########################

pattern1 = 'div class="articleGender (w ?)Icon"(d ?)/div'

sexages = re.compile(pattern1).findall(data)

9.设置用户所有信息输出的格局设置

################## 批量输出用户的所以个人信息 #################

print()

for sexage in sexages:

sa = sexage

print(' ' 17, '= = 第', page, '页-第', str(x+1) + '个用户 = = ',' ' 17)

print('【用户名】:',name[x],end='')

print('【性别】:',sa[0],' 【年龄】:',sa[1])

print('【内容】:',cont[x])

print('【搞笑指数】:',happy[x],' 【评论数】:',comm[x])

print(' ' 25,' 三八分割线 ',' ' 25)

x += 1

###################end##########################

10.设置循环遍历爬取13页的用户信息

for i in range(1,14):

url = ' '+str(i)+'/'

qiuShi(url,i)

运行结果,部分截图:

怎么修好并运行下面这个python爬虫,好像header里面参数过期了?

如果是通过 cookie 饶过登录认证(是个好方法,因为很多情况下涉及参数加密),但是这种方式不好的地方就是 cookie 会过期,所以过期了以后需要手动更新里面的 cookie。比直接模拟登录稍微麻烦一点,短期使用以这种方式优先。模拟登录难度高些,当然效果好。

如何用python 爬虫抓取金融数据

获取数据是数据分析中必不可少的一部分,而网络爬虫是是获取数据的一个重要渠道之一。鉴于此,我拾起了Python这把利器,开启了网络爬虫之路。

本篇使用的版本为python3.5,意在抓取证券之星上当天所有A股数据。程序主要分为三个部分:网页源码的获取、所需内容的提取、所得结果的整理。

一、网页源码的获取

很多人喜欢用python爬虫的原因之一就是它容易上手。只需以下几行代码既可抓取大部分网页的源码。

import urllib.request

url='ar.com/stock/ranklist_a_3_1_1.html'  #目标网址headers={"User-Agent":"Mozilla/5.0 (Windows NT 10.0; WOW64)"}  #伪装浏览器请求报头request=urllib.request.Request(url=url,headers=headers)  #请求服务器response=urllib.request.urlopen(request)  #服务器应答content=response.read().decode('gbk')   #以一定的编码方式查看源码print(content)  #打印页面源码

虽说抓一页的源码容易,不过在一个网站内大量抓取网页源码却经常遭到服务器拦截,顿时感觉世界充满了恶意。于是我开始研习突破反爬虫限制的功法。

1.伪装流浪器报头

很多服务器通过浏览器发给它的报头来确认是否是人类用户,所以我们可以通过模仿浏览器的行为构造请求报头给服务器发送请求。服务器会识别其中的一些参数来识别你是否是人类用户,很多网站都会识别User-Agent这个参数,所以请求头最好带上。有一些警觉性比较高的网站可能还会通过其他参数识别,比如通过Accept-Language来辨别你是否是人类用户,一些有防盗链功能的网站还得带上referer这个参数等等。

2.随机生成UA

证券之星只需带User-Agent这个参数就可以抓取页面信息了,不过连续抓取几页就被服务器阻止了。于是我决定每次抓取数据时模拟不同的浏览器发送请求,而服务器通过User-Agent来识别不同浏览器,所以每次爬取页面可以通过随机生成不同的UA构造报头去请求服务器,

3.减慢爬取速度

虽然模拟了不同浏览器爬取数据,但发现有的时间段可以爬取上百页的数据,有时候却只能爬取十来页,看来服务器还会根据你的访问的频率来识别你是人类用户还是网络爬虫。所以我每抓取一页都让它随机休息几秒,加入此句代码后,每个时间段都能爬取大量股票数据了。

4.使用代理IP

天有不测风云,程序在公司时顺利测试成功,回寝室后发现又只能抓取几页就被服务器阻止了。惊慌失措的我赶紧询问度娘,获知服务器可以识别你的IP,并记录此IP访问的次数,可以使用高匿的代理IP,并在抓取的过程中不断的更换,让服务器无法找出谁是真凶。此功还未修成,欲知后事如何,请听下回分解。

5.其他突破反爬虫限制的方法

很多服务器在接受浏览器请求时会发送一个cookie文件给浏览器,然后通过cookie来跟踪你的访问过程,为了不让服务器识别出你是爬虫,建议最好带上cookie一起去爬取数据;如果遇上要模拟登陆的网站,为了不让自己的账号被拉黑,可以申请大量的账号,然后再爬入,此处涉及模拟登陆、验证码识别等知识,暂时不再深究...总之,对于网站主人来说,有些爬虫确实是令人讨厌的,所以会想出很多方法限制爬虫的进入,所以我们在强行进入之后也得注意些礼仪,别把人家的网站给拖垮了。

二、所需内容的提取

获取网页源码后,我们就可以从中提取我们所需要的数据了。从源码中获取所需信息的方法有很多,使用正则表达式就是比较经典的方法之一。我们先来看所采集网页源码的部分内容。

为了减少干扰,我先用正则表达式从整个页面源码中匹配出以上的主体部分,然后从主体部分中匹配出每只股票的信息。代码如下。

pattern=re.compile('tbody[\s\S]*/tbody')  

body=re.findall(pattern,str(content))  #匹配tbody和/tbody之间的所有代码pattern=re.compile('(.*?)')

stock_page=re.findall(pattern,body[0])  #匹配和之间的所有信息

其中compile方法为编译匹配模式,findall方法用此匹配模式去匹配出所需信息,并以列表的方式返回。正则表达式的语法还挺多的,下面我只罗列所用到符号的含义。

语法    说明  

.    匹配任意除换行符“\n”外的字符  

*    匹配前一个字符0次或无限次  

?    匹配前一个字符0次或一次  

\s    空白字符:[空格\t\r\n\f\v]  

\S    非空白字符:[^\s]  

[...]    字符集,对应的位置可以是字符集中任意字符  

(...)    被括起来的表达式将作为分组,里面一般为我们所需提取的内容  

正则表达式的语法挺多的,也许有大牛只要一句正则表达式就可提取我想提取的内容。在提取股票主体部分代码时发现有人用xpath表达式提取显得更简洁一些,看来页面解析也有很长的一段路要走。

三、所得结果的整理

通过非贪婪模式(.*?)匹配和之间的所有数据,会匹配出一些空白字符出来,所以我们采用如下代码把空白字符移除。

stock_last=stock_total[:] #stock_total:匹配出的股票数据for data in stock_total:  #stock_last:整理后的股票数据

if data=='':

stock_last.remove('')

最后,我们可以打印几列数据看下效果,代码如下

print('代码','\t','简称','   ','\t','最新价','\t','涨跌幅','\t','涨跌额','\t','5分钟涨幅')for i in range(0,len(stock_last),13):        #网页总共有13列数据

print(stock_last[i],'\t',stock_last[i+1],' ','\t',stock_last[i+2],'  ','\t',stock_last[i+3],'  ','\t',stock_last[i+4],'  ','\t',stock_last[i+5])

python爬虫中怎么写反爬虫

1、通过UA判断:UA是UserAgent,是要求浏览器的身份标志。

UA是UserAgent,是要求浏览器的身份标志。反爬虫机制通过判断访问要求的头部没有UA来识别爬虫,这种判断方法水平很低,通常不作为唯一的判断标准。反爬虫非常简单,可以随机数UA。

2、通过Cookie判定:Cookie是指会员帐户密码登录验证

Cookie是指会员帐户密码登录验证,通过区分该帐户在短时间内爬行的频率来判断。这种方法的反爬虫也很困难,需要多账户爬行。

3、通过访问频率判定

爬虫类经常在短时间内多次访问目标网站,反爬虫类机制可以通过单个IP访问的频率来判断是否是爬虫类。这样的反爬方式难以反制,只能通过更换IP来解决。

4、通过验证码判定

验证码是反爬虫性价比高的实施方案。反爬虫通常需要访问OCR验证码识别平台,或者使用TesseractOCR识别,或者使用神经网络训练识别验证码。

5、动态性页面加载

使用动态加载的网站通常是为了方便用户点击和查看,爬虫无法与页面互动,这大大增加了爬虫的难度。

一般情况下,用户对网站进行信息爬取时,都要受到“爬虫”的约束,使用户在获取信息时受到一定的阻碍