您的位置:

python爬虫随机森林预测(深度随机森林 Python)

本文目录一览:

如何用Python进行大数据挖掘和分析?

如何用Python进行大数据挖掘和分析?快速入门路径图

大数据无处不在。在时下这个年代,不管你喜欢与否,在运营一个成功的商业的过程中都有可能会遇到它。

什么是 大数据 ?

大数据就像它看起来那样——有大量的数据。单独而言,你能从单一的数据获取的洞见穷其有限。但是结合复杂数学模型以及强大计算能力的TB级数据,却能创造出人类无法制造的洞见。大数据分析提供给商业的价值是无形的,并且每天都在超越人类的能力。

大数据分析的第一步就是要收集数据本身,也就是众所周知的“数据挖掘”。大部分的企业处理着GB级的数据,这些数据有用户数据、产品数据和地理位置数据。今天,我将会带着大家一起探索如何用 Python 进行大数据挖掘和分析?

为什么选择Python?

Python最大的优点就是简单易用。这个语言有着直观的语法并且还是个强大的多用途语言。这一点在大数据分析环境中很重要,并且许多企业内部已经在使用Python了,比如Google,YouTube,迪士尼等。还有,Python是开源的,并且有很多用于数据科学的类库。

现在,如果你真的要用Python进行大数据分析的话,毫无疑问你需要了解Python的语法,理解正则表达式,知道什么是元组、字符串、字典、字典推导式、列表和列表推导式——这只是开始。

数据分析流程

一般可以按“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实施一个数据分析项目。按照这个流程,每个部分需要掌握的细分知识点如下:

数据获取:公开数据、Python爬虫

外部数据的获取方式主要有以下两种。

第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。

另一种获取外部数据的方式就是爬虫。

比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。

在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数………

以及,如何用 Python 库(urllib、BeautifulSoup、requests、scrapy)实现网页爬虫。

掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、使用cookie信息、模拟用户登录、抓包分析、搭建代理池等等,来应对不同网站的反爬虫限制。

数据存取:SQL语言

在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据。

SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:

提取特定情况下的数据

数据库的增、删、查、改

数据的分组聚合、如何建立多个表之间的联系

数据预处理:Python(pandas)

很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。

对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:

选择:数据访问

缺失值处理:对缺失数据行进行删除或填充

重复值处理:重复值的判断与删除

异常值处理:清除不必要的空格和极端、异常数据

相关操作:描述性统计、Apply、直方图等

合并:符合各种逻辑关系的合并操作

分组:数据划分、分别执行函数、数据重组

Reshaping:快速生成数据透视表

概率论及统计学知识

需要掌握的知识点如下:

基本统计量:均值、中位数、众数、百分位数、极值等

其他描述性统计量:偏度、方差、标准差、显著性等

其他统计知识:总体和样本、参数和统计量、ErrorBar

概率分布与假设检验:各种分布、假设检验流程

其他概率论知识:条件概率、贝叶斯等

有了统计学的基本知识,你就可以用这些统计量做基本的分析了。你可以使用 Seaborn、matplotlib 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。

Python 数据分析

掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:

回归分析:线性回归、逻辑回归

基本的分类算法:决策树、随机森林……

基本的聚类算法:k-means……

特征工程基础:如何用特征选择优化模型

调参方法:如何调节参数优化模型

Python 数据分析包:scipy、numpy、scikit-learn等

在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。

当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类。

然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去了解如何通过特征提取、参数调节来提升预测的精度。

你可以通过 Python 中的 scikit-learn 库来实现数据分析、数据挖掘建模和分析的全过程。

总结

其实做数据挖掘不是梦,5步就能让你成为一个Python爬虫高手!

如何用Python做爬虫

1)首先你要明白爬虫怎样工作。

想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。

在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。

突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。

好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。

那么在python里怎么实现呢?

很简单

import Queue

initial_page = "初始化页"

url_queue = Queue.Queue()

seen = set()

seen.insert(initial_page)

url_queue.put(initial_page)

while(True): #一直进行直到海枯石烂

if url_queue.size()0:

current_url = url_queue.get() #拿出队例中第一个的url

store(current_url) #把这个url代表的网页存储好

for next_url in extract_urls(current_url): #提取把这个url里链向的url

if next_url not in seen:

seen.put(next_url)

url_queue.put(next_url)

else:

break

写得已经很伪代码了。

所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。

2)效率

如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。

问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。

通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example

注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]

好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。

3)集群化抓取

爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...

那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?

我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)

考虑如何用python实现:

在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。

代码于是写成

#slave.py

current_url = request_from_master()

to_send = []

for next_url in extract_urls(current_url):

to_send.append(next_url)

store(current_url);

send_to_master(to_send)

#master.py

distributed_queue = DistributedQueue()

bf = BloomFilter()

initial_pages = ""

while(True):

if request == 'GET':

if distributed_queue.size()0:

send(distributed_queue.get())

else:

break

elif request == 'POST':

bf.put(request.url)

好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及后处理

虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。

但是如果附加上你需要这些后续处理,比如

有效地存储(数据库应该怎样安排)

有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)

有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...

及时更新(预测这个网页多久会更新一次)

如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,

“路漫漫其修远兮,吾将上下而求索”。

所以,不要问怎么入门,直接上路就好了:)

学了python爬虫还能干什么?

1、收集数据

Python爬虫程序可用于收集数据。这也是最直接和最常用的方法。由于爬虫程序是一个程序,程序运行得非常快,不会因为重复的事情而感到疲倦,因此使用爬虫程序获取大量数据变得非常简单和快速。

由于99%以上的网站是基于模板开发的,使用模板可以快速生成大量布局相同、内容不同的页面。因此,只要为一个页面开发了爬虫程序,爬虫程序也可以对基于同一模板生成的不同页面进行爬取内容。

2、调研

比如要调研一家电商公司,想知道他们的商品销售情况。这家公司声称每月销售额达数亿元。如果你使用爬虫来抓取公司网站上所有产品的销售情况,那么你就可以计算出公司的实际总销售额。此外,如果你抓取所有的评论并对其进行分析,你还可以发现网站是否出现了刷单的情况。数据是不会说谎的,特别是海量的数据,人工造假总是会与自然产生的不同。过去,用大量的数据来收集数据是非常困难的,但是现在在爬虫的帮助下,许多欺骗行为会赤裸裸地暴露在阳光下。

3、刷流量和秒杀

刷流量是Python爬虫的自带的功能。当一个爬虫访问一个网站时,如果爬虫隐藏得很好,网站无法识别访问来自爬虫,那么它将被视为正常访问。结果,爬虫不小心刷了网站的流量。

除了刷流量外,还可以参与各种秒杀活动,包括但不限于在各种电商网站上抢商品,优惠券,抢机票和火车票。目前,网络上很多人专门使用爬虫来参与各种活动并从中赚钱。这种行为一般称为薅羊毛,这种人被称为羊毛党。不过使用爬虫来薅羊毛进行盈利的行为实际上游走在法律的灰色地带,大家不要尝试。

如何入门 Python 爬虫

“入门”是良好的动机,但是可能作用缓慢。如果你手里或者脑子里有一个项目,那么实践起来你会被目标驱动,而不会像学习模块一样慢慢学习。

另外如果说知识体系里的每一个知识点是图里的点,依赖关系是边的话,那么这个图一定不是一个有向无环图。因为学习A的经验可以帮助你学习B。因此,你不需要学习怎么样“入门”,因为这样的“入门”点根本不存在!你需要学习的是怎么样做一个比较大的东西,在这个过程中,你会很快地学会需要学会的东西的。当然,你可以争论说需要先懂python,不然怎么学会python做爬虫呢?但是事实上,你完全可以在做这个爬虫的过程中学习python :D看到前面很多答案都讲的“术”——用什么软件怎么爬,那我就讲讲“道”和“术”吧——爬虫怎么工作以及怎么在python实现。

先长话短说总结一下。你需要学习:

基本的爬虫工作原理

基本的http抓取工具,scrapy

Bloom Filter: Bloom

如果需要大规模网页抓取,你需要学习分布式爬虫的概念。其实没那么玄乎,你只要学会怎样维护一个所有集群机器能够有效分享的分布式队列就好。最简单的实现是python-rq: https: //github.com /nvie/rqrq和Scrapy的结合:darkrho/scrapy-redis · GitHub后续处理,网页析取(grangier/python-goose · GitHub),存储(Mongodb)以下是短话长说。说说当初写的一个集群爬下整个豆瓣的经验吧。

1)首先你要明白爬虫怎样工作

想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。

在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。

突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。

好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。

那么在python里怎么实现呢?很简单:

Python

import Queue

initial_page = "http:/ /www. renminribao. com"url_queue = Queue.Queue()seen = set()

seen.insert(initial_page)

url_queue.put(initial_page)

while(True): #一直进行直到海枯石烂

if url_queue.size()0:

current_url = url_queue.get() #拿出队例中第一个的urlstore(current_url) #把这个url代表的网页存储好for next_url in extract_urls(current_url): #提取把这个url里链向的urlif next_url not in seen:

seen.put(next_url)

url_queue.put(next_url)

else:

break

import Queue

initial_page = "http:/ / .com"url_queue = Queue.Queue()seen = set()

seen.insert(initial_page)

url_queue.put(initial_page)

while(True): #一直进行直到海枯石烂

if url_queue.size()0:

current_url = url_queue.get() #拿出队例中第一个的urlstore(current_url) #把这个url代表的网页存储好for next_url in extract_urls(current_url): #提取把这个url里链向的urlif next_url not in seen:

seen.put(next_url)

url_queue.put(next_url)

else:

break

写得已经很伪代码了。

所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。

2)效率

如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。

问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。

通常的判重做法是怎样呢?Bloom Filter。简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]

好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。

3)集群化抓取

爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了…那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?

我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)考虑如何用python实现:

在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。

代码于是写成:

Python

#slave.py

current_url = request_from_master()

to_send = []

for next_url in extract_urls(current_url):

to_send.append(next_url)

store(current_url);

send_to_master(to_send)

#master.py

distributed_queue = DistributedQueue()

bf = BloomFilter()

initial_pages = "www. renmingribao .com"

while(True):

if request == 'GET':

if distributed_queue.size()0:

send(distributed_queue.get())

else:

break

elif request == 'POST':

bf.put(request.url)

#slave.py

current_url = request_from_master()

to_send = []

for next_url in extract_urls(current_url):

to_send.append(next_url)

store(current_url);

send_to_master(to_send)

#master.py

distributed_queue = DistributedQueue()

bf = BloomFilter()

initial_pages = "www. renmingribao .com"

while(True):

if request == 'GET':

if distributed_queue.size()0:

send(distributed_queue.get())

else:

break

elif request == 'POST':

bf.put(request.url)

好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub4)展望及后处理虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。

但是如果附加上你需要这些后续处理,比如

有效地存储(数据库应该怎样安排)

有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛…及时更新(预测这个网页多久会更新一次)如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,“路漫漫其修远兮,吾将上下而求索”。

爬虫python入门难学吗

爬虫是大家公认的入门Python最好方式,没有之一。虽然Python有很多应用的方向,但爬虫对于新手小白而言更友好,原理也更简单,几行代码就能实现基本的爬虫,零基础也能快速入门,让新手小白体会更大的成就感。因此小编整理了新手小白必看的Python爬虫学习路线全面指导,希望可以帮到大家。

1.学习 Python 包并实现基本的爬虫过程

大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。

如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下。当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化。

2.了解非结构化数据的存储

爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。

3.学习scrapy,搭建工程化爬虫

掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备Python爬虫工程师的思维了。

4.学习数据库知识,应对大规模数据存储与提取

Python客栈送红包、纸质书

爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。

5.掌握各种技巧,应对特殊网站的反爬措施

当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了。

6.分布式爬虫,实现大规模并发采集,提升效率

爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握Scrapy+ MongoDB + Redis 这三种工具。Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。

只要按照以上的Python爬虫学习路线,一步步完成,即使是新手小白也能成为老司机,而且学下来会非常轻松顺畅。所以新手在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目,直接开始操作。

其实学Python编程和练武功其实很相似,入门大致这样几步:找本靠谱的书,找个靠谱的师傅,找一个地方开始练习。

学语言也是这样的:选一本通俗易懂的书,找一个好的视频资料,然后自己装一个IDE工具开始边学边写。

7.给初学Python编程者的建议:

①信心。可能你看了视频也没在屏幕上做出点啥,都没能把程序运行起来。但是要有自信,所有人都是这样过来的。

②选择适合自己的教程。有很早的书籍很经典,但是不是很适合你,很多书籍是我们学过一遍Python之后才会发挥很大作用。

③写代码,就是不断地写,练。这不用多说,学习什么语言都是这样。总看视频,编不出东西。可以从书上的小案例开始写,之后再写完整的项目。

④除了学Python,计算机的基础也要懂得很多,补一些英语知识也行。

⑤不但会写,而且会看,看源码是一个本领,调试代码更是一个本领,就是解决问题的能力,挑错。理解你自己的报错信息,自己去解决。

⑥当你到达了一个水平,就多去看官方的文档,在CSDN上面找下有关Python的博文或者群多去交流。

希望想学习Python的利用好现在的时间,管理好自己的学习时间,有效率地学习Python,Python这门语言可以做很多事情。

Python能做什么,能够开发什么项目?

Python是一种计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越来越多被用于独立的、大型项目的开发。

Python是一种解释型脚本语言,可以应用于Web 和 Internet开发、科学计算和统计、人工智能、教育、桌面界面开发、软件开发、后端开发这些领域。

Python的应用

1、系统编程

提供API(Application Programming Interface应用程序编程接口),能方便进行系统维护和管理,Linux下标志性语言之一,是很多系统管理员理想的编程工具。

2、图形处理

有PIL、Tkinter等图形库支持,能方便进行图形处理。

3、数学处理

NumPy扩展提供大量与许多标准数学库的接口。

4、文本处理

python提供的re模块能支持正则表达式,还提供SGML,XML分析模块,许多程序员利用python进行XML程序的开发。

5、数据库编程

程序员可通过遵循Python DB-API(数据库应用程序编程接口)规范的模块与Microsoft SQL Server,Oracle,Sybase,DB2,MySQL、SQLite等数据库通信。python自带有一个Gadfly模块,提供了一个完整的SQL环境。

6、网络编程

提供丰富的模块支持sockets编程,能方便快速地开发分布式应用程序。很多大规模软件开发计划例如Zope,Mnet 及BitTorrent. Google都在广泛地使用它。

7、Web编程

应用的开发语言,支持最新的XML技术。

8、多媒体应用

Python的PyOpenGL模块封装了“OpenGL应用程序编程接口”,能进行二维和三维图像处理。PyGame模块可用于编写游戏软件。

9、pymo引擎

PYMO全称为python memories off,是一款运行于Symbian S60V3,Symbian3,S60V5, Symbian3, Android系统上的AVG游戏引擎。因其基于python2.0平台开发,并且适用于创建秋之回忆(memories off)风格的AVG游戏,故命名为PYMO。

10、黑客编程

python有一个hack的库,内置了你熟悉的或不熟悉的函数,但是缺少成就感。

参考资料来源:百度百科—Python