Android游戏市场越来越大,游戏性能的优化也变得愈发重要。Android平台上的游戏开发通常采用OpenGL ES,但是随着硬件和驱动的升级,Vulkan成为了Android游戏开发的更好选择。本文将详细介绍如何使用Vulkan提高Android游戏的性能。
一、Vulkan简介
Vulkan是一种新的图形API,被设计用于提供高性能的图形和计算处理。Vulkan能够更好地利用多核CPU和GPU,显著提高游戏性能。Vulkan还具有更大的灵活性,使开发人员可以更好地控制硬件资源。
Vulkan与OpenGL ES最大的不同是其更为底层的编程接口。OpenGL ES可以被描述为一个状态机,应用程序通过设置一些状态以控制OpenGL ES的行为。但在Vulkan中,应用程序必须以更为严谨的方式来描述渲染和计算操作。
二、使用Vulkan提高Android游戏性能的方法
1、利用多线程的实现
由于Vulkan使用多个线程来执行渲染和计算操作,因此开发人员可以利用多线程来优化Android游戏的性能。例如,可以使用Vulkan中的异步渲染技术,在渲染线程中渲染新的帧,在另一个线程中提交命令缓冲区。
2、使用Vulkan的扩展
Vulkan具有许多扩展,可用于优化Android游戏性能。例如,VK_KHR_maintenance1扩展可以增加绘图管线的性能,VK_KHR_get_memory_requirements2扩展可以增加内存分配的效率等等。开发人员可以针对自己的需求选择不同的扩展。
3、使用Vulkan的低层次优化
Vulkan提供了多种低层次优化技术,如显式同步、细粒度控制、优化图形管线等,开发人员可以根据自己的需求选择合适的优化方式。
三、Vulkan代码实例
// 1. 创建 Vulkan 实例 VkInstance instance; VkApplicationInfo appInfo = {}; appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; appInfo.pApplicationName = "My Application"; appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.pEngineName = "No Engine"; appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.apiVersion = VK_API_VERSION_1_0; VkInstanceCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; createInfo.pApplicationInfo = &appInfo; vkCreateInstance(&createInfo, nullptr, &instance); // 2. 获取 Vulkan 物理设备 VkPhysicalDevice physicalDevice; uint32_t deviceCount = 0; vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr); if (deviceCount == 0) { throw std::runtime_error("failed to find GPUs with Vulkan support!"); } std::vectordevices(deviceCount); vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data()); for (const auto& device : devices) { if (isDeviceSuitable(device)) { physicalDevice = device; break; } } if (physicalDevice == VK_NULL_HANDLE) { throw std::runtime_error("failed to find a suitable GPU!"); } // 3. 创建 Vulkan 设备 VkDevice device; QueueFamilyIndices indices = findQueueFamilies(physicalDevice); std::vector queueCreateInfos; std::set uniqueQueueFamilies = {indices.graphicsFamily.value(), indices.presentFamily.value()}; float queuePriority = 1.0f; for (int queueFamily : uniqueQueueFamilies) { VkDeviceQueueCreateInfo queueCreateInfo = {}; queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo.queueFamilyIndex = queueFamily; queueCreateInfo.queueCount = 1; queueCreateInfo.pQueuePriorities = &queuePriority; queueCreateInfos.push_back(queueCreateInfo); } VkPhysicalDeviceFeatures deviceFeatures = {}; VkDeviceCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; createInfo.pQueueCreateInfos = queueCreateInfos.data(); createInfo.queueCreateInfoCount = static_cast (queueCreateInfos.size()); createInfo.pEnabledFeatures = &deviceFeatures; createInfo.enabledExtensionCount = static_cast (deviceExtensions.size()); createInfo.ppEnabledExtensionNames = deviceExtensions.data(); if (enableValidationLayers) { createInfo.enabledLayerCount = static_cast (validationLayers.size()); createInfo.ppEnabledLayerNames = validationLayers.data(); } else { createInfo.enabledLayerCount = 0; } if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) { throw std::runtime_error("failed to create logical device!"); } // 4. 创建 Vulkan 渲染流程 VkRenderPass renderPass; VkAttachmentDescription colorAttachment = {}; colorAttachment.format = swapChainImageFormat; colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT; colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; VkAttachmentReference colorAttachmentRef = {}; colorAttachmentRef.attachment = 0; colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &colorAttachmentRef; VkRenderPassCreateInfo renderPassInfo = {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassInfo.attachmentCount = 1; renderPassInfo.pAttachments = &colorAttachment; renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpass; if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) { throw std::runtime_error("failed to create render pass!"); } // 5. 创建 Vulkan 图形管线 VkPipeline pipeline; auto vertShaderCode = readFile("shaders/vert.spv"); auto fragShaderCode = readFile("shaders/frag.spv"); VkShaderModule vertShaderModule = createShaderModule(vertShaderCode); VkShaderModule fragShaderModule = createShaderModule(fragShaderCode); VkPipelineShaderStageCreateInfo vertShaderStageInfo = {}; vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT; vertShaderStageInfo.module = vertShaderModule; vertShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo fragShaderStageInfo = {}; fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT; fragShaderStageInfo.module = fragShaderModule; fragShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo}; auto bindingDescription = Vertex::getBindingDescription(); auto attributeDescriptions = Vertex::getAttributeDescriptions(); VkPipelineVertexInputStateCreateInfo vertexInputInfo = {}; vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertexInputInfo.vertexBindingDescriptionCount = 1; vertexInputInfo.vertexAttributeDescriptionCount = static_cast (attributeDescriptions.size()); vertexInputInfo.pVertexBindingDescriptions = &bindingDescription; vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data(); VkPipelineInputAssemblyStateCreateInfo inputAssembly = {}; inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; inputAssembly.primitiveRestartEnable = VK_FALSE; VkViewport viewport = {}; viewport.x = 0.0f; viewport.y = 0.0f; viewport.width = (float)swapChainExtent.width; viewport.height = (float)swapChainExtent.height; viewport.minDepth = 0.0f; viewport.maxDepth = 1.0f; VkRect2D scissor = {}; scissor.offset = {0, 0}; scissor.extent = swapChainExtent; VkPipelineViewportStateCreateInfo viewportState = {}; viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewportState.viewportCount = 1; viewportState.pViewports = &viewport; viewportState.scissorCount = 1; viewportState.pScissors = &scissor; VkPipelineRasterizationStateCreateInfo rasterizer = {}; rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rasterizer.depthClampEnable = VK_FALSE; rasterizer.rasterizerDiscardEnable = VK_FALSE; rasterizer.polygonMode = VK_POLYGON_MODE_FILL; rasterizer.lineWidth = 1.0f; rasterizer.cullMode = VK_CULL_MODE_BACK_BIT; rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE; rasterizer.depthBiasEnable = VK_FALSE; rasterizer.depthBiasConstantFactor = 0.0f; rasterizer.depthBiasClamp = 0.0f; rasterizer.depthBiasSlopeFactor = 0.0f; VkPipelineMultisampleStateCreateInfo multisampling = {}; multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; multisampling.sampleShadingEnable = VK_FALSE; multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; multisampling.minSampleShading = 1.0f; multisampling.pSampleMask = nullptr; multisampling.alphaToCoverageEnable = VK_FALSE; multisampling.alphaToOneEnable = VK_FALSE; VkPipelineColorBlendAttachmentState colorBlendAttachment = {}; colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; colorBlendAttachment.blendEnable = VK_FALSE; VkPipelineColorBlendStateCreateInfo colorBlending = {}; colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; colorBlending.logicOpEnable = VK_FALSE; colorBlending.logicOp = VK_LOGIC_OP_COPY; colorBlending.attachmentCount = 1; colorBlending.pAttachments = &colorBlendAttachment; VkPipelineLayoutCreateInfo pipelineLayoutInfo = {}; pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pipelineLayoutInfo.setLayoutCount = 0; pipelineLayoutInfo.pSetLayouts = nullptr; pipelineLayoutInfo.pushConstantRangeCount = 0; pipelineLayoutInfo.pPushConstantRanges = nullptr; if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) { throw std::runtime_error("failed to create pipeline layout!"); } VkGraphicsPipelineCreateInfo pipelineInfo = {}; pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipelineInfo.stageCount = 2; pipelineInfo.pStages = shaderStages; pipelineInfo.pVertexInputState = &vertexInputInfo; pipelineInfo.pInputAssemblyState = &inputAssembly; pipelineInfo.pViewportState = &viewportState; pipelineInfo.pRasterizationState = &rasterizer; pipelineInfo.pMultisampleState = &multisampling; pipelineInfo.pDepthStencilState = nullptr; pipelineInfo.pColorBlendState = &colorBlending; pipelineInfo.pDynamicState = nullptr; pipelineInfo.layout = pipelineLayout; pipelineInfo.renderPass = renderPass; pipelineInfo.subpass = 0; if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &pipeline) != VK_SUCCESS) { throw std::runtime_error("failed to create graphics pipeline!"); } vkDestroyShaderModule(device, fragShaderModule, nullptr); vkDestroyShaderModule(device, vertShaderModule, nullptr);
结论
Vulkan可以显著提高Android游戏的性能。通过多线程实现、使用Vulkan扩展和低层次优化等方式,开发人员可以很容易地将性能提升到一个新的水平。使用Vulkan的代码示例也展示了Vulkan的简单易用性,使开发人员可以更加高效地开发Android游戏。