您的位置:

关于在python中将pandas的信息

本文目录一览:

利用Python中的pandas如何写入到excel指定的单元格中?

利用第三方库:openpyxl 可以实现,示例代码如下:

from openpyxl import Workbook

wb = Workbook()

ws = wb['sheet1']

ws['C2'].value = 100

如何使用Python的Pandas库绘制折线图

我们经常会使用Python的Pandas绘制各种数据图形,那么如何使用它绘制折线图呢?下面我给大家分享一下。

工具/材料

Pycharm

01

首先我们需要打开Excel软件准备需要的数据,这里多准备几列数据,一列就是一条折线,如下图所示

02

然后我们打开Pycharm软件,新建Python文件,导入Pandas库,接着将Excel中的数据读取进数据集缓存,如下图所示

03

接下来我们利用plot方法绘制折线图,如下图所示,这里只添加了一列标题

04

运行文件以后我们就可以看到折线图显示出来了,但是比较的简单,下面我们逐渐的丰富它

05

然后在plot方法中将excel里面的多列标题都添加进来,如下图所示

06

这次在运行文件的时候我们就可以看到折线图上有多条线了,如下图所示

07

接下来我们在为折线图设置标题,X,Y坐标轴的内容,如下图所示

08

然后通过plot方法下面的area方法对折线图的空白区域进行叠加填充,如下图所示

09

最后我们运行完善好后的文件,就可以看到如下图所示的折线图了,到此我们的折线图绘制也就完成了

如何利用Python中的Pandas库绘制柱形图

我们利用Python的Pandas库可以绘制很多图形,那么如何绘制柱形图呢?下面我给大家分享演示一下。

工具/材料

Pycharm

首先我们打开Excel文件,准备要生成柱形图的数据表,如下图所示

接下来在Python文件中导入pandas库,然后将Excel文件加载到缓存对象中,如下图所示

然后我们导入matplotlib下面的pyplot库,如下图所示,导入以后给它起一个别名

接下来我们通过pandas库下面的bar来设置柱形图的X,Y坐标轴,如下图所示

然后通过pyplot的show方法将柱形图进行展示出来,如下图所示

接下来运行程序以后我们就看到柱形图生成出来了,如下图所示

然后如果我们想将柱形图中的数据排序的话可以利用sort_values实现,如下图所示

最后运行排序好后的程序,我们就可以看到柱形图中的数据已经排序好了,如下图所示

Python数据分析: 初识Pandas,理解Pandas实现和原理

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理

01 重要的前言

这段时间和一些做数据分析的同学闲聊,我发现数据分析技能入门阶段存在一个普遍性的问题,很多凭着兴趣入坑的同学,都能够很快熟悉Python基础语法,然后不约而同的一头扎进《利用Python进行数据分析》这本经典之中,硬着头皮啃完之后,好像自己什么都会了一点,然而实际操作起来既不知从何操起,又漏洞百出。

至于原因嘛,理解不够,实践不够是两条老牌的拦路虎,只能靠自己来克服。还有一个非常有意思且经常被忽视的因素——陷入举三反一的懵逼状态。

什么意思呢?假如我是个旱鸭子,想去学游泳,教练很认真的给我剖析了蛙泳的动作,扶着我的腰让我在水里划拉了5分钟,接着马上给我讲解了蝶泳,又是划拉了5分钟,然后又硬塞给我潜泳的姿势,依然是划拉5分钟。最后,教练一下子把我丢进踩不到底的泳池,给我呐喊助威。

作为一个还没入门的旱鸭子,教练倾囊授了我3种游泳技巧,让我分别实践了5分钟。这样做的结果就是我哪一种游泳技巧也没学会,只学会了喝水。当一个初学者一开始就陷入针对单个问题的多种解决方法,而每一种方法的实践又浅尝辄止,在面对具体问题时往往会手忙脚乱。

拿Pandas来说,它的多种构造方式,多种索引方式以及类似效果的多种实现方法,很容易把初学者打入举三反一的懵逼状态。所以,尽量避开这个坑也是我写Pandas基础系列的初衷,希望通过梳理和精简知识点的方式,给需要的同学一些启发。目前暂定整个基础系列分为4篇,基础篇过后便是有趣的实战篇。

下面开始进入正题(我真是太唠叨了)。

02 Pandas简介

江湖上流传着这么一句话——分析不识潘大师(PANDAS),纵是老手也枉然。

Pandas是基于Numpy的专业数据分析工具,可以灵活高效的处理各种数据集,也是我们后期分析案例的神器。它提供了两种类型的数据结构,分别是DataFrame和Series,我们可以简单粗暴的把DataFrame理解为Excel里面的一张表,而Series就是表中的某一列,后面学习和用到的所有Pandas骚操作,都是基于这些表和列进行的操作(关于Pandas和Excel的形象关系,这里推荐我的好朋友张俊红写的《对比EXCEL,轻松学习Python数据分析》)。

这里有一点需要强调,Pandas和Excel、SQL相比,只是调用和处理数据的方式变了,核心都是对源数据进行一系列的处理,在正式处理之前,更重要的是谋定而后动,明确分析的意义,理清分析思路之后再处理和分析数据,往往事半功倍。

03 创建、读取和存储

1、创建

在Pandas中我们想要构造下面这一张表应该如何操作呢?

别忘了,第一步一定是先导入我们的库——import pandas as pd

构造DataFrame最常用的方式是字典+列表,语句很简单,先是字典外括,然后依次打出每一列标题及其对应的列值(此处一定要用列表),这里列的顺序并不重要:

左边是jupyter notebook中dataframe的样子,如果对应到excel中,他就是右边表格的样子,通过改变columns,index和values的值来控制数据。

PS,如果我们在创建时不指定index,系统会自动生成从0开始的索引。

2、 读取

更多时候,我们是把相关文件数据直接读进PANDAS中进行操作,这里介绍两种非常接近的读取方式,一种是CSV格式的文件,一种是EXCEL格式(.xlsx和xls后缀)的文件。

读取csv文件:

engine是使用的分析引擎,读取csv文件一般指定python避免中文和编码造成的报错。而读取Excel文件,则是一样的味道:

非常easy,其实read_csv和read_excel还有一些参数,比如header、sep、names等,大家可以做额外了解。实践中数据源的格式一般都是比较规整的,更多情况是直接读取。

3、存储

存储起来一样非常简单粗暴且相似:

04 快速认识数据

这里以我们的案例数据为例,迅速熟悉查看N行,数据格式概览以及基础统计数据。

1、查看数据,掐头看尾

很多时候我们想要对数据内容做一个总览,用df.head()函数直接可以查看默认的前5行,与之对应,df.tail()就可以查看数据尾部的5行数据,这两个参数内可以传入一个数值来控制查看的行数,例如df.head(10)表示查看前10行数据。

2、 格式查看

df.info()帮助我们一步摸清各列数据的类型,以及缺失情况:

从上面直接可以知道数据集的行列数,数据集的大小,每一列的数据类型,以及有多少条非空数据。

3、统计信息概览

快速计算数值型数据的关键统计指标,像平均数、中位数、标准差等等。

我们本来有5列数据,为什么返回结果只有两列?那是因为这个操作只针对数值型的列。其中count是统计每一列的有多少个非空数值,mean、std、min、max对应的分别是该列的均值、标准差、最小值和最大值,25%、50%、75%对应的则是分位数。

05 列的基本处理方式

这里,我们采用SQL四大法宝的逻辑来简单梳理针对列的基本处理方式——增、删、选、改。

温馨提示:使用Pandas时,尽量避免用行或者EXCEL操作单元格的思维来处理数据,要逐渐养成一种列向思维,每一列是同宗同源,处理起来是嗖嗖的快。

1、增

增加一列,用df[‘新列名’] = 新列值的形式,在原数据基础上赋值即可:

2、删:

我们用drop函数制定删除对应的列,axis = 1表示针对列的操作,inplace为True,则直接在源数据上进行修改,否则源数据会保持原样。

3、选:

想要选取某一列怎么办?df[‘列名’]即可:

选取多列呢?需要用列表来传递:df[[‘第一列’,‘第二列’,‘第三列’…]]

4、 改:

好事多磨,复杂的针对特定条件和行列的筛选、修改,放在后面结合案例细讲,这里只讲一下最简单的更改:df[‘旧列名’] = 某个值或者某列值,就完成了对原列数值的修改。

06 常用数据类型及操作

1、字符串

字符串类型是最常用的格式之一了,Pandas中字符串的操作和原生字符串操作几乎一毛一样,唯一不同的是需要在操作前加上".str"。

小Z温馨提示:我们最初用df2.info()查看数据类型时,非数值型的列都返回的是object格式,和str类型深层机制上的区别就不展开了,在常规实际应用中,我们可以先理解为object对应的就是str格式,int64对应的就是int格式,float64对应的就是float格式即可。

在案例数据中,我们发现来源明细那一列,可能是系统导出的历史遗留问题,每一个字符串前面都有一个“-”符号,又丑又无用,所以把他给拿掉:

一般来说清洗之后的列是要替换掉原来列的:

2、 数值型

数值型数据,常见的操作是计算,分为与单个值的运算,长度相等列的运算。

以案例数据为例,源数据访客数我们是知道的,现在想把所有渠道的访客都加上10000,怎么操作呢?

只需要选中访客数所在列,然后加上10000即可,pandas自动将10000和每一行数值相加,针对单个值的其他运算(减乘除)也是如此。

列之间的运算语句也非常简洁。源数据是包含了访客数、转化率和客单价,而实际工作中我们对每个渠道贡献的销售额更感兴趣。(销售额 = 访客数 X 转化率 X 客单价)

对应操作语句:df[‘销售额’] = df[‘访客数’] * df[‘转化率’] * df[‘客单价’]

但为什么疯狂报错?

导致报错的原因,是数值型数据和非数值型数据相互计算导致的。PANDAS把带“%”符号的转化率识别成字符串类型,我们需要先拿掉百分号,再将这一列转化为浮点型数据:

要注意的是,这样操作,把9.98%变成了9.98,所以我们还需要让支付转化率除以100,来还原百分数的真实数值:

然后,再用三个指标相乘计算销售额:

3、时间类型

PANDAS中时间序列相关的水非常深,这里只对日常中最基础的时间格式进行讲解,对时间序列感兴趣的同学可以自行查阅相关资料,深入了解。

以案例数据为例,我们这些渠道数据,是在2019年8月2日提取的,后面可能涉及到其他日期的渠道数据,所以需要加一列时间予以区分,在EXCEL中常用的时间格式是’2019-8-3’或者’2019/8/3’,我们用PANDAS来实现一下:

在实际业务中,一些时候PANDAS会把文件中日期格式的字段读取为字符串格式,这里我们先把字符串’2019-8-3’赋值给新增的日期列,然后用to_datetime()函数将字符串类型转换成时间格式:

转换成时间格式(这里是datetime64)之后,我们可以用处理时间的思路高效处理这些数据,比如,我现在想知道提取数据这一天离年末还有多少天(‘2019-12-31’),直接做减法(该函数接受时间格式的字符串序列,也接受单个字符串):

Python pandas用法

在Python中,pandas是基于NumPy数组构建的,使数据预处理、清洗、分析工作变得更快更简单。pandas是专门为处理表格和混杂数据设计的,而NumPy更适合处理统一的数值数组数据。

使用下面格式约定,引入pandas包:

pandas有两个主要数据结构:Series和DataFrame。

Series是一种类似于一维数组的对象,它由 一组数据 (各种NumPy数据类型)以及一组与之相关的 数据标签(即索引) 组成,即index和values两部分,可以通过索引的方式选取Series中的单个或一组值。

pd.Series(list,index=[ ]) ,第二个参数是Series中数据的索引,可以省略。

Series类型索引、切片、运算的操作类似于ndarray,同样的类似Python字典类型的操作,包括保留字in操作、使用.get()方法。

Series和ndarray之间的主要区别在于Series之间的操作会根据索引自动对齐数据。

DataFrame是一个表格型的数据类型,每列值类型可以不同,是最常用的pandas对象。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。

pd.DataFrame(data,columns = [ ],index = [ ]) :columns和index为指定的列、行索引,并按照顺序排列。

如果创建时指定了columns和index索引,则按照索引顺序排列,并且如果传入的列在数据中找不到,就会在结果中产生缺失值:

数据索引 :Series和DataFrame的索引是Index类型,Index对象是不可修改,可通过索引值或索引标签获取目标数据,也可通过索引使序列或数据框的计算、操作实现自动化对齐。索引类型index的常用方法:

重新索引 :能够改变、重排Series和DataFrame索引,会创建一个新对象,如果某个索引值当前不存在,就引入缺失值。

df.reindex(index, columns ,fill_value, method, limit, copy ) :index/columns为新的行列自定义索引;fill_value为用于填充缺失位置的值;method为填充方法,ffill当前值向前填充,bfill向后填充;limit为最大填充量;copy 默认True,生成新的对象,False时,新旧相等不复制。

删除指定索引 :默认返回的是一个新对象。

.drop() :能够删除Series和DataFrame指定行或列索引。

删除一行或者一列时,用单引号指定索引,删除多行时用列表指定索引。

如果删除的是列索引,需要增加axis=1或axis='columns'作为参数。

增加inplace=True作为参数,可以就地修改对象,不会返回新的对象。

在pandas中,有多个方法可以选取和重新组合数据。对于DataFrame,表5-4进行了总结

适用于Series和DataFrame的基本统计分析函数 :传入axis='columns'或axis=1将会按行进行运算。

.describe() :针对各列的多个统计汇总,用统计学指标快速描述数据的概要。

.sum() :计算各列数据的和

.count() :非NaN值的数量

.mean( )/.median() :计算数据的算术平均值、算术中位数

.var()/.std() :计算数据的方差、标准差

.corr()/.cov() :计算相关系数矩阵、协方差矩阵,是通过参数对计算出来的。Series的corr方法用于计算两个Series中重叠的、非NA的、按索引对齐的值的相关系数。DataFrame的corr和cov方法将以DataFrame的形式分别返回完整的相关系数或协方差矩阵。

.corrwith() :利用DataFrame的corrwith方法,可以计算其列或行跟另一个Series或DataFrame之间的相关系数。传入一个Series将会返回一个相关系数值Series(针对各列进行计算),传入一个DataFrame则会计算按列名配对的相关系数。

.min()/.max() :计算数据的最小值、最大值

.diff() :计算一阶差分,对时间序列很有效

.mode() :计算众数,返回频数最高的那(几)个

.mean() :计算均值

.quantile() :计算分位数(0到1)

.isin() :用于判断矢量化集合的成员资格,可用于过滤Series中或DataFrame列中数据的子集

适用于Series的基本统计分析函数,DataFrame[列名]返回的是一个Series类型。

.unique() :返回一个Series中的唯一值组成的数组。

.value_counts() :计算一个Series中各值出现的频率。

.argmin()/.argmax() :计算数据最大值、最小值所在位置的索引位置(自动索引)

.idxmin()/.idxmax() :计算数据最大值、最小值所在位置的索引(自定义索引)

pandas提供了一些用于将表格型数据读取为DataFrame对象的函数。下表对它们进行了总结,其中read_csv()、read_table()、to_csv()是用得最多的。

在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载、清理、转换以及重塑。

在许多数据分析工作中,缺失数据是经常发生的。对于数值数据,pandas使用浮点值NaN(np.nan)表示缺失数据,也可将缺失值表示为NA(Python内置的None值)。

替换值

.replace(old, new) :用新的数据替换老的数据,如果希望一次性替换多个值,old和new可以是列表。默认会返回一个新的对象,传入inplace=True可以对现有对象进行就地修改。

删除重复数据

利用函数或字典进行数据转换

df.head():查询数据的前五行

df.tail():查询数据的末尾5行

pandas.cut()

pandas.qcut() 基于分位数的离散化函数。基于秩或基于样本分位数将变量离散化为等大小桶。

pandas.date_range() 返回一个时间索引

df.apply() 沿相应轴应用函数

Series.value_counts() 返回不同数据的计数值

df.aggregate()

df.reset_index() 重新设置index,参数drop = True时会丢弃原来的索引,设置新的从0开始的索引。常与groupby()一起用

numpy.zeros()

为什么我用Python进行pandas数据分布时会报错?

问题原因:import scapy后执行脚本调用scapy模块中(默认自动加了.py后缀)优先找了当前目录的man.py,因为两文件不一样(一个是我们引入别人写好的库文件,一个是我们自己创建的文件),所以就报错了。

一、如果一个错误出现后没有被捕获(捕获是什么先不管,现在就理解为出现了一个错误),它就一直被往上抛,最终将被Python解释器捕获。然后就在本该输出结果的地方打印一大串错误信息,然后程序退出。示例代码如下:

二、示例代码执行后结果如下:

三、解读错误信息就可以定位错误:

四、更换python版本3.6.1,pandas版本依然为0.20.2,不过python版本不一样代码略有不同。

1、去Chrome网页链接,下载解压后,将chromedriver.exe 放到Python的安装目录即可。

五、修改mv scapy.py abc.py问题解决。

1、转换cmd命令:chcp 65001,也就是将cmd转化为utf-8。