本文目录一览:
学习C语言应遵循哪些步骤?
第1步:定义程序的目标
在动手写程序之前,要在脑中有清晰的思路。想要程序去做什么首先自己要明确自己想做什么,思考程序需要哪些信息,要进行哪些计算和控制,以及程序应该要报告什么信息。在这一步骤中,不涉及具体的计算机语言,应该用一般术语来描述问题。
第2步:设计程序
对程序应该完成什么任务有概念性的认识后,就应该考虑如何用程序来完成它。除此之外,还要决定在程序(还可能是辅助文件)中如何表示数据,以及用什么方法处理数据。
学习C语言之初,遇到的问题都很简单,没什么可选的。
第3步:编写代码
设计好程序后,就可以编写代码来实现。也就是说,把设计的程序翻译成C语言。这里是真正需要使用C语言的地方。可以把思路写在纸上,但是最终还是要把代码输入计算机。
程序清单1.1 C源代码示例
#include stdio.h
int main(void)
{
int dogs;
printf("How many dogs do you have?\n");
scanf("%d", dogs);
printf("So you have %d dog(s)!\n", dogs);
return 0;
}
在这一步骤中,应该给自己编写的程序添加文字注释。最简单的方式是使用C的注释工具在源代码中加入对代码的解释。
第4步:编译
接下来的这一步是编译源代码。再次提醒读者注意,编译的细节取决于编程的环境,稍后马上介绍一些常见的编程环境。现在,先从概念的角度讲解编译发生了什么事情。
编译器是把源代码转换成可执行代码的程序。可执行代码是用计算机的机器语言表示的代码。这种语言由数字码表示的指令组成。如前所述,不同的计算机使用不同的机器语言方案。C编译器负责把C代码翻译成特定的机器语言。
此外,C编译器还将源代码与C库(库中包含大量的标准函数供用户使用,如printf()和scanf())的代码合并成最终的程序(更精确地说,
编译器还会检查C语言程序是否有效。如果C编译器发现错误,就不生成可执行文件并报错。理解特定编译器报告的错误或警告信息是程序员要掌握的另一项技能。
第5步:运行程序
传统上,可执行文件是可运行的程序。在常见环境(包括Windows命令提示符模式、UNIX终端模式和Linux终端模式)中运行程序要输入可执行文件的文件名,而其他环境可能要运行命令(如,在VAX中的VMS[2])或一些其他机制。
例如,在Windows和Macintosh提供的集成开发环境(IDE)中,用户可以在IDE中通过选择菜单中的选项或按下特殊键来编辑和执行C程序。最终生成的程序可通过单击或双击文件名或图标直接在操作系统中运行。
第6步:测试和调试程序
程序能运行是个好迹象,但有时也可能会出现运行错误。查找并修复程序错误的过程叫调试。学习的过程中不可避免会犯错,学习编程也是如此。因此,把所学的知识应用于编程时,最好为自己会犯错做好心理准备。
第7步:维护和修改代码
创建完程序后,发现程序有错,或者想扩展程序的用途,这时就要修改程序。例如,用户输入以Zz开头的姓名时程序出现错误、想到了一个更好的解决方案、想添加一个更好的新特性,或者要修改程序使其能在不同的计算机系统中运行,等等。
C语言是什么意思干什么的?
C语言作为一门计算机编程通用语言,被广泛应用,c语言的设计目标是提供一种能以简易的方式编译、处理低级储存器、生产少量的机器码以及不需要任何运行环境支持便能运行的编程语言。在基本概念了解之后,想要精通C语言,它的特点和必备知识内容,你需要了解哪些?
C语言基本特点:
1.语言简洁,实用灵活方便。
2.运算符丰富,表达能力强。
3.数计类型丰富。
4.目标程序质量高,具有面向硬件系统的特点。
5.具有结构化的控制语句和模块化的程序结构。
6.具有编译预处理功能。
7.程序设计自由度大,可移植性好。
C语言必备知识内容:
1.C语言关键字的用法,基本的api,这部分内容掌握的越好越熟练,在编写代码的过程中也会更顺手。
2.数组指针等各种用法要熟记于心,程序bug的多少在一定程度上跟你对指针熟练程度的关系有着非常紧密的联系。
3.算法要熟悉,一些小范围的使用基本算法是非常多的。
4.会看文档,作为程序员的你应该都明白,一些开源的东西想要改成自己想要的,文档是必须要学会看得。
5.bug跟踪和调试,在分析查找问题时都得通过bug调试来进行追踪。
这五点内容,是C语言开发和学习过程中必须要掌握的内容。
C语言必备技能:
1.完整清晰的思路,清晰的思路可以保证如何来实现我们的功能模块,作为码农,这项技能还是相当重要的。
2.写代码的熟练程度,简单来讲也就是在你缩写的功能模块当中,编译错误越少越好,稍稍改动就可以保证能够很好地运行调试。
想要精通C语言,以上三点内容的分析,是必须要掌握的内容,这三点内容在实际工作当中会有很大的帮助。
C语言中有哪些实用的编程技巧
这篇文章主要介绍了C语言高效编程的几招小技巧,本文讲解了以空间换时间、用数学方法解决问题以及使用位操作等编辑技巧,并给出若干方法和代码实例,需要的朋友可以参考下
引言:
编写高效简洁的C语言代码,是许多软件工程师追求的目标。本文就工作中的一些体会和经验做相关的阐述,不对的地方请各位指教。
第1招:以空间换时间
计算机程序中最大的矛盾是空间和时间的矛盾,那么,从这个角度出发逆向思维来考虑程序的效率问题,我们就有了解决问题的第1招——以空间换时间。
例如:字符串的赋值。
方法A,通常的办法:
代码如下:
#define LEN 32
char string1 [LEN];
memset (string1,0,LEN);
strcpy (string1,“This is a example!!”);
方法B:
代码如下:
const char string2[LEN] =“This is a example!”;
char * cp;
cp = string2 ;
(使用的时候可以直接用指针来操作。)
从上面的例子可以看出,A和B的效率是不能比的。在同样的存储空间下,B直接使用指针就可以操作了,而A需要调用两个字符函数才能完成。B的缺点在于灵 活性没有A好。在需要频繁更改一个字符串内容的时候,A具有更好的灵活性;如果采用方法B,则需要预存许多字符串,虽然占用了大量的内存,但是获得了程序 执行的高效率。
如果系统的实时性要求很高,内存还有一些,那我推荐你使用该招数。
该招数的变招——使用宏函数而不是函数。举例如下:
方法C:
代码如下:
#define bwMCDR2_ADDRESS 4
#define bsMCDR2_ADDRESS 17
int BIT_MASK(int __bf)
{
return ((1U (bw ## __bf)) - 1) (bs ## __bf);
}
void SET_BITS(int __dst, int __bf, int __val)
{
__dst = ((__dst) ~(BIT_MASK(__bf))) | /
(((__val) (bs ## __bf)) (BIT_MASK(__bf))))
}
SET_BITS(MCDR2, MCDR2_ADDRESS, RegisterNumber);
方法D:
代码如下:
#define bwMCDR2_ADDRESS 4
#define bsMCDR2_ADDRESS 17
#define bmMCDR2_ADDRESS BIT_MASK(MCDR2_ADDRESS)
#define BIT_MASK(__bf) (((1U (bw ## __bf)) - 1) (bs ## __bf))
#define SET_BITS(__dst, __bf, __val) /
((__dst) = ((__dst) ~(BIT_MASK(__bf))) | /
(((__val) (bs ## __bf)) (BIT_MASK(__bf))))
SET_BITS(MCDR2, MCDR2_ADDRESS, RegisterNumber);
函数和宏函数的区别就在于,宏函数占用了大量的空间,而函数占用了时间。大家要知道的是,函数调用是要使用系统的栈来保存数据的,如果编译器里有栈检查 选项,一般在函数的头会嵌入一些汇编语句对当前栈进行检查;同时,CPU也要在函数调用时保存和恢复当前的现场,进行压栈和弹栈操作,所以,函数调用需要 一些CPU时间。而宏函数不存在这个问题。宏函数仅仅作为预先写好的代码嵌入到当前程序,不会产生函数调用,所以仅仅是占用了空间,在频繁调用同一个宏函 数的时候,该现象尤其突出。
D方法是我看到的最好的置位操作函数,是ARM公司源码的一部分,在短短的三行内实现了很多功能,几乎涵盖了所有的位操作功能。C方法是其变体,其中滋味还需大家仔细体会。
第2招:数学方法解决问题
现在我们演绎高效C语言编写的第二招——采用数学方法来解决问题。
数学是计算机之母,没有数学的依据和基础,就没有计算机的发展,所以在编写程序的时候,采用一些数学方法会对程序的执行效率有数量级的提高。
举例如下,求 1~100的和。
方法E
代码如下:
int I , j;
for (I = 1 ;I=100; I ++){
j += I;
}
方法F
代码如下:
int I;
I = (100 * (1+100)) / 2
这个例子是我印象最深的一个数学用例,是我的计算机启蒙老师考我的。当时我只有小学三年级,可惜我当时不知道用公式 N×(N+1)/ 2 来解决这个问题。方法E循环了100次才解决问题,也就是说最少用了100个赋值,100个判断,200个加法(I和j);而方法F仅仅用了1个加法,1 次乘法,1次除法。效果自然不言而喻。所以,现在我在编程序的时候,更多的是动脑筋找规律,最大限度地发挥数学的威力来提高程序运行的效率。
第3招:使用位操作
实现高效的C语言编写的第三招——使用位操作,减少除法和取模的运算。
在计算机程序中,数据的位是可以操作的最小数据单位,理论上可以用“位运算”来完成所有的运算和操作。一般的位操作是用来控制硬件的,或者做数据变换使用,但是,灵活的位操作可以有效地提高程序运行的效率。举例如下:
方法G
代码如下:
int I,J;
I = 257 /8;
J = 456 % 32;
方法H
int I,J;
I = 257 3;
J = 456 - (456 4 4);
在字面上好像H比G麻烦了好多,但是,仔细查看产生的汇编代码就会明白,方法G调用了基本的取模函数和除法函数,既有函数调用,还有很多汇编代码和寄存 器参与运算;而方法H则仅仅是几句相关的汇编,代码更简洁,效率更高。当然,由于编译器的不同,可能效率的差距不大,但是,以我目前遇到的MS C ,ARM C 来看,效率的差距还是不小。相关汇编代码就不在这里列举了。
运用这招需要注意的是,因为CPU的不同而产生的问题。比如说,在PC上用这招编写的程序,并在PC上调试通过,在移植到一个16位机平台上的时候,可能会产生代码隐患。所以只有在一定技术进阶的基础下才可以使用这招。
第4招:汇编嵌入
高效C语言编程的必杀技,第四招——嵌入汇编。
“在熟悉汇编语言的人眼里,C语言编写的程序都是垃圾”。这种说法虽然偏激了一些,但是却有它的道理。汇编语言是效率最高的计算机语言,但是,不可能靠着它来写一个操作系统吧?所以,为了获得程序的高效率,我们只好采用变通的方法 ——嵌入汇编,混合编程。
举例如下,将数组一赋值给数组二,要求每一字节都相符。
代码如下:
char string1[1024],string2[1024];
方法I
代码如下:
int I;
for (I =0 ;I1024;I++)
*(string2 + I) = *(string1 + I)
方法J
代码如下:
#ifdef _PC_
int I;
for (I =0 ;I1024;I++)
*(string2 + I) = *(string1 + I);
#else
#ifdef _ARM_
__asm
{
MOV R0,string1
MOV R1,string2
MOV R2,#0
loop:
LDMIA R0!, [R3-R11]
STMIA R1!, [R3-R11]
ADD R2,R2,#8
CMP R2, #400
BNE loop
}
#endif
方法I是最常见的方法,使用了1024次循环;方法J则根据平台不同做了区分,在ARM平台下,用嵌入汇编仅用128次循环就完成了同样的操作。这里有 朋友会说,为什么不用标准的内存拷贝函数呢?这是因为在源数据里可能含有数据为0的字节,这样的话,标准库函数会提前结束而不会完成我们要求的操作。这个 例程典型应用于LCD数据的拷贝过程。根据不同的CPU,熟练使用相应的嵌入汇编,可以大大提高程序执行的效率。
虽然是必杀技,但是如果轻易使用会付出惨重的代价。这是因为,使用了嵌入汇编,便限制了程序的可移植性,使程序在不同平台移植的过程中,卧虎藏龙,险象环生!同时该招数也与现代软件工程的思想相违背,只有在迫不得已的情况下才可以采用。切记,切记。