您的位置:

杨辉c语言函数,杨辉三角c语言函数调用

本文目录一览:

C语言 杨辉三角用函数表示

#include stdio.h

void main()

{

void f(int n);

int n=0;

while(n1 || n16)

{

printf("请输入杨辉三角形的行数:");

scanf("%d",n);

}

f(n);

}

void f(int n)

{

int i,j,a[17][17]={0};

for(i=0;in;i++)

a[i][0]=1;

for(i=1;in;i++)

for(j=1;j=i;j++)

a[i][j]=a[i-1][j-1]+a[i-1][j];

for(i=0;in;i++)

{

for(j=0;j=i;j++)

printf("%5d",a[i][j]);

printf("\n");

}

}

怎样用c语言来编写杨辉三角形的递归程序?

方法一:用二维数组来编写。

方法二:用自定义函数来编写。

首先,杨辉三角的两个腰边的数都是1,其它位置的数都是上顶上两个数之和。杨辉三角的任意一行都是的二项式系数,n为行数减1。也就是说任何一个数等于这个是高中的组合数。n代表行数减1,不代表列数减1。如:第五行的第三个数就为=6。

先定义一个二维数组:a[N][N],略大于要打印的行数。再令两边的数为1,即当每行的第一个数和最后一个数为1。a[i][0]=a[i][i-1]=1,n为行数。除两边的数外,任何一个数为上两顶数之和,即a[i][j]=a[i-1][j-1]+a[i-1][j]。最后输出杨辉三角。

方法一二维数组代码如下:

#include stdio.h#define N 14void main(){  int i, j, k, n=0, a[N][N]; /*定义二维数组a[14][14]*/  while(n=0||n=13){ /*控制打印的行数不要太大,过大会造成显示不规范*/    printf("请输入要打印的行数:");    scanf("%d",n);  }  printf("%d行杨辉三角如下:\n",n);  for(i=1;i=n;i++)    a[i][1] = a[i][i] = 1; /*两边的数令它为1,因为现在循环从1开始,就认为a[i][1]为第一个数*/  for(i=3;i=n;i++)    for(j=2;j=i-1;j++)      a[i][j]=a[i-1][j-1]+a[i-1][j]; /*除两边的数外都等于上两顶数之和*/  for(i=1;i=n;i++){    for(k=1;k=n-i;k++)      printf("  "); /*这一行主要是在输出数之前打上空格占位,让输出的数更美观*/    for(j=1;j=i;j++) /*j=i的原因是不输出其它的数,只输出我们想要的数*/      printf("%6d",a[i][j]);         printf("\n"); /*当一行输出完以后换行继续下一行的输出*/  }  printf("\n");}

方法二:自定义函数代码:

杨辉三角中的任何一个数都等于一个组合数。

#include stdio.h/* * 定义阶乘,在这里可能会想。为什么要用float,当我试第一次的时候, * 如果用int的话,那么在打印行数多了以后就会出错。 * 这是因为阶乘的数比较大,如果用int就不够用了。下同 */float J(int i){  int j;  float k=1;  for(j=1;j=i;j++)    k=k*j;  return(k);}float C(int i,int j){ /*定义组合数*/  float k;  k=J(j)/(J(i)*J(j-i));  return(k);}void main(){  int i=0,j,k,n; /*打印杨辉三角*/  while(i=0||i16){    printf("请输入要打印的行数:");    scanf("%d",i);  }  printf("%d行杨辉三角如下:\n",i);  for(j=0;ji;j++){    for(k=1;k=(i-j);k++)      printf(" ");    for(n=0;n=j;n++)      printf("%4.0f",C(n,j));    printf("\n");  }  printf("\n\n");}

c语言 杨辉三角中函数的调用,请各位大虾帮忙修改下,谢啦!

#include stdio.h

#include math.h

int c(int x,int y);//如果自定义函数初始化放在main函数之后,必须先声明,如果在main函数之前初始化,就可以省略声明

/*杨辉三角*/

void main(){

int i,j,n=10;

printf("N=");

while(n9)

scanf("%d",n);

for(i=0;i=n;i++)

{

for(j=0;j9-i;j++)printf(" ");

for(j=1;ji+2;j++)printf("%6d",c(i,j));

printf("\n");

}

}

int c(int x,int y) {

int z;

if((y==1) || (y==x+1))

return(1);

else

z=c(x-1,y-1)+c(x-1,y);

return (z);

}

C语言,输出杨辉三角

修改:#include"stdio.h" 

void main()

{

int a[10][10],i,j;

for(i=0;i=9;i++){

a[i][0]=1;//原代码此处需修改,第一位数为1

a[i][i]=1;

}

for(i=1;i=9;i++)

for(j=1;ji;j++)//原代码此处需修改

a[i][j]=a[i-1][j-1]+a[i-1][j];

for(i=0;i=9;i++){

for(j=0;j=i;j++){printf("%5d\t",a[i][j]);}

printf("\n");

}return 0;}

扩展资料:

杨辉三角概述:

1.每个数等于它上方两数之和。

2.每行数字左右对称,由1开始逐渐变大。

3.第n行的数字有n+1项。

4.第n行数字和为2n。

5.第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。

6.第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。

7.每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)。

8.(a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。

9.将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。

10将各行数字相排列,可得11的n-1(n为行数)次方:1=11^0; 11=11^1; 121=11^2……当n5时会不符合这一条性质,此时应把第n行的最右面的数字"1"放在个位,然后把左面的一个数字的个位对齐到十位。

以此类推,把空位用“0”补齐,然后把所有的数加起来,得到的数正好是11的n-1次方。以n=11为例,第十一行的数为:1,10,45,120,210,252,210,120,45,10,1,结果为 25937424601=1110。

参考资料:杨辉三角-百度百科