您的位置:

lda的python的简单介绍

本文目录一览:

python lda 主题模型 需要使用什么包

python lda 主题模型 需要使用什么包

数据结构是程序构成的重要部分,链表、树、图这些在用C 编程时需要仔细表达的问题在Python 中简单了很多。在Python 中,最基本的数据结构就是数组、序列和哈希表,用它们想要表达各种常见的数据结构是非常容易的。没了定义指针、分配内存的任务,编程变得有趣了。CORBA 是一种高级的软件体系结构,它是语言无关平台无关的。C++、Java 等语言都有CORBA 绑定,但与它们相比,Python 的 CORBA 绑定却容易很多,因为在程序员看来,一个 CORBA 的类和 Python 的类用起来以及实现起来并没有什么差别。

python中的lda包怎么用

安装

$ pip install lda --user

示例

from __future__ import division, print_function

import numpy as np

import lda

import lda.datasets

# document-term matrix

X = lda.datasets.load_reuters()

print("type(X): {}".format(type(X)))

print("shape: {}\n".format(X.shape))

print(X[:5, :5])

'''输出:

type(X): type 'numpy.ndarray'

shape: (395L, 4258L)

[[ 1 0 1 0 0]

[ 7 0 2 0 0]

[ 0 0 0 1 10]

[ 6 0 1 0 0]

[ 0 0 0 2 14]]

'''

Python LDA降维中不能输出指定维度(n_components)的新数据集

LDA降维后的维度区间在[1,C-1],C为特征空间的维度,与原始特征数n无关,对于二值分类,最多投影到1维,所以我估计你是因为这是个二分类问题,所以只能降到一维。