您的位置:

python运行突然特别慢(python速度为什么慢)

本文目录一览:

运行一段python程序,刚开始运行特别快,后面就变慢了,这是什么原因

你弄得太复杂了。第一sleep是个很慢的东东。

你应该简化逻辑。把时间管理单独抽象出一个类。

这种事情最好的办法是,用操作系统自带的计划任务。不管是windows还是linux都有计划任务。然后通过计划任务调用你的小程序。

5-10句话解决。

此外你对于time,

datetime库使用还是有限,不用这么复杂的逻辑,大部分你的想法人家库里都有。自己看看,可以很简单实现了。

DIY,do

not

repeat

yourself,

这个是PYTHON编程原则。不用重复做没有意义的事情。

python运行速度慢怎么办

yxhtest7772017-07-18

关注

分享

 697     2

python运行速度慢怎么办?6个Python性能优化技巧

Python是一门非常酷的语言,因为很少的Python代码可以在短时间内做很多事情,并且,Python很容易就能支持多任务和多重处理。

Python的批评者声称Python性能低效、执行缓慢,但实际上并非如此:尝试以下6个小技巧,可以加快Python应用程序。

关键代码可以依赖于扩展包

Python使许多编程任务变得简单,但是对于很关键的任务并不总是提供最好的性能。使用C、C++或者机器语言扩展包来执行关键任务能极大改善性能。这些包是依赖于平台的,也就是说,你必须使用特定的、与你使用的平台相关的包。简而言之,该解决方案提供了一些应用程序的可移植性,以换取性能,您可以获得只有通过直接向底层主机编程。

下面这些扩展包你可以考虑添加到你的个人扩展库中:

Cython

PyInlne

PyPy

Pyrex

这些包有不同的作用和执行方式。例如,Pyrex 让Python处理一些内存任务变得简单高效;PyInline可以直接让你在Python应用程序中使用C代码,虽然内联代码被单独编译,但是如果你能高效的利用C代码,它可以在同一个地方处理每一件事情。

使用关键字排序

有很多古老的Python代码在执行时将花费额外的时间去创建一个自定义的排序函数。最好的排序方式是使用关键字和默认的sort()方法。

优化循环

每一种编程语言都强调循环语句的优化,Python也是一样的。尽管你可以依赖于丰富的技术让循环运行的更快,然而,开发者经常忽略的一个方法是避免在循环内部使用点拼接字符串。

使用新版本

任何一个在线上搜索Python资料的人都会发现无数关于Python版本迁移的信息。通常,Python每一个版本都针对之前的一个版本做了优化和改进,以让Python运行的更快。限制因素是你喜欢的函数库是否也针对Python的新版本做了改进。

当你使用了新的函数库,获得了Python的新版本,你需要保证代码依然能够运行,检查应用,修正差异。然后,如果你仅仅是

python为啥运行效率不高

原因:1、python是动态语言;2、python是解释执行,但是不支持JIT;3、python中一切都是对象,每个对象都需要维护引用计数,增加了额外的工作。4、python GIL;5、垃圾回收。

当我们提到一门编程语言的效率时:通常有两层意思,第一是开发效率,这是对程序员而言,完成编码所需要的时间;另一个是运行效率,这是对计算机而言,完成计算任务所需要的时间。编码效率和运行效率往往是鱼与熊掌的关系,是很难同时兼顾的。不同的语言会有不同的侧重,python语言毫无疑问更在乎编码效率,life is short,we use python。

虽然使用python的编程人员都应该接受其运行效率低的事实,但python在越多越来的领域都有广泛应用,比如科学计算 、web服务器等。程序员当然也希望python能够运算得更快,希望python可以更强大。

首先,python相比其他语言具体有多慢,这个不同场景和测试用例,结果肯定是不一样的。这个网址给出了不同语言在各种case下的性能对比,这一页是python3和C++的对比,下面是两个case:

从上图可以看出,不同的case,python比C++慢了几倍到几十倍。

python运算效率低,具体是什么原因呢,下列罗列一些:

第一:python是动态语言

一个变量所指向对象的类型在运行时才确定,编译器做不了任何预测,也就无从优化。举一个简单的例子: r = a + b。 a和b相加,但a和b的类型在运行时才知道,对于加法操作,不同的类型有不同的处理,所以每次运行的时候都会去判断a和b的类型,然后执行对应的操作。而在静态语言如C++中,编译的时候就确定了运行时的代码。

另外一个例子是属性查找,关于具体的查找顺序在《python属性查找》中有详细介绍。简而言之,访问对象的某个属性是一个非常复杂的过程,而且通过同一个变量访问到的python对象还都可能不一样(参见Lazy property的例子)。而在C语言中,访问属性用对象的地址加上属性的偏移就可以了。

第二:python是解释执行,但是不支持JIT(just in time compiler)。虽然大名鼎鼎的google曾经尝试Unladen Swallow 这个项目,但最终也折了。

第三:python中一切都是对象,每个对象都需要维护引用计数,增加了额外的工作。

第四:python GIL,GIL是Python最为诟病的一点,因为GIL,python中的多线程并不能真正的并发。如果是在IO bound的业务场景,这个问题并不大,但是在CPU BOUND的场景,这就很致命了。所以笔者在工作中使用python多线程的情况并不多,一般都是使用多进程(pre fork),或者在加上协程。即使在单线程,GIL也会带来很大的性能影响,因为python每执行100个opcode(默认,可以通过sys.setcheckinterval()设置)就会尝试线程的切换,具体的源代码在ceval.c::PyEval_EvalFrameEx。

 第五:垃圾回收,这个可能是所有具有垃圾回收的编程语言的通病。python采用标记和分代的垃圾回收策略,每次垃圾回收的时候都会中断正在执行的程序,造成所谓的顿卡。infoq上有一篇文章,提到禁用Python的GC机制后,Instagram性能提升了10%。感兴趣的读者可以去细读。

推荐课程:Python机器学习(Mooc礼欣、嵩天教授)

请问大佬们,为什么我python运行程序特别慢啊,我这个程序怎么改一下可以运行的更快呢?

您好,茫茫人海之中,能为君排忧解难实属朕的荣幸,在下拙见,若有错误,还望见谅!。展开全部

yxhtest7772017-07-18

关注

分享

 697  2

python运行速度慢怎么办?6个Python性能优化技巧

Python是一门非常酷的语言,因为很少的Python代码可以在短时间内做很多事情,并且,Python很容易就能支持多任务和多重处理。

Python的批评者声称Python性能低效、执行缓慢,但实际上并非如此:尝试以下6个小技巧,可以加快Python应用程序。

关键代码可以依赖于扩展包

Python使许多编程任务变得简单,但是对于很关键的任务并不总是提供最好的性能。使用C、C++或者机器语言扩展包来执行关键任务能极大改善性能。这些包是依赖于平台的,也就是说,你必须使用特定的、与你使用的平台相关的包。简而言之,该解决方案提供了一些应用程序的可移植性,以换取性能,您可以获得只有通过直接向底层主机编程。

下面这些扩展包你可以考虑添加到你的个人扩展库中:

Cython

PyInlne

PyPy

Pyrex

这些包有不同的作用和执行方式。例如,Pyrex 让Python处理一些内存任务变得简单高效;PyInline可以直接让你在Python应用程序中使用C代码,虽然内联代码被单独编译,但是如果你能高效的利用C代码,它可以在同一个地方处理每一件事情。

使用关键字排序

有很多古老的Python代码在执行时将花费额外的时间去创建一个自定义的排序函数。最好的排序方式是使用关键字和默认的sort()方法。

优化循环

每一种编程语言都强调循环语句的优化,Python也是一样的。尽管你可以依赖于丰富的技术让循环运行的更快,然而,开发者经常忽略的一个方法是避免在循环内部使用点拼接字符串。

使用新版本

任何一个在线上搜索Python资料的人都会发现无数关于Python版本迁移的信息。通常,Python每一个版本都针对之前的一个版本做了优化和改进,以让Python运行的更快。限制因素是你喜欢的函数库是否也针对Python的新版本做了改进。

当你使用了新的函数库,获得了Python的新版本,你需要保证代码依然能够运行,检查应用,修正差异。然后,如果你仅仅是非常感谢您的耐心观看,如有帮助请采纳,祝生活愉快!谢谢!

python语言运行速度如此差?

这就要说到 Python 类语言和 C 类语言的主要区别了,Python 属于解释型语言,通俗来说就是你可以一句一句地输入,而 Python 解释器(Interpreter)可以一句一句地执行,而 C 语言属于编译型语言,无法做到这一点,只能一次性输入完成,编译成一个完整的程序再执行,而这个编译的过程由于现代编译器做了非常多的优化,并且你的程序没有输入只有输出,每次运行都出固定的结果,所以极有可能被编译器优化成为了只有一条输出语句(实际情况可能要复杂一些),总的来说就是由于二者之间原理的差异导致了性能的差异,你可以搜一搜相关的资料,关掉 C 语言编译时的优化,再看一下性能,或者将固定的那些值改为运行时需要输入再看一下效果。

Python 相较于 C 的优势有很多,性能这一方面你不需要关心,做出一个足够复杂的程序,它们之间运行效率差不了多少的。

Python运行效率低的原因有哪些

1.Python是动态语言

动态语言是一类在运行时可以改变其结构的语言,如新的函数、对象、代码可以被引入,已有的函数可以被删除或其他结构上的变化等,该类语言更具有活性,但是不可避免的因为运行时的不确定性也影响运行效率。

2.Python是解释执行

相比于C语言编译性语言编写的程序,Python是解释执行语言,其运行过程是Python运行文件程序时,Python解释器将源代码转换为字节码,然后再由Python解释器来执行这些字节码。其每次运行都要进行转换成字节码,然后再由虚拟机把字节码转换成机器语言,最后才能在硬件上运行,与编译性语言相比,其过程更复杂,性能肯定会受影响。

3.Python中一切都是对象

Python是一门面向对象的编程语言,其设计理念是一切皆是对象,如数字、字符串、元组、列表、字典、函数、方法、类、模块等都是对象,包括代码,每个对象都需要维护引用计数,因此,增加了额外工作,影响了性能。

4.Python GIL

GIL是Python最为诟病的一点,因为GIL,Python中的多线程并不能真正的并发,即使在单线程,GIL也会带来很大的性能影响,因为python每执行100个opcode就会尝试线程的切换,因此,影响Python运行效率。

5.垃圾回收

Python采用标记和分代的垃圾回收策略,每次垃圾回收的时候都会中断正在执行的程序,造成所谓的顿卡,影响运行效率。