您的位置:

java密码加盐加密,java密码加密代码

本文目录一览:

求教nodejs怎么对密码进行加盐的hash加密

以前java项目最近打算用node.js重写,但是加密这里实在没搞定。java中加密是:1024次加盐sha-1加密,

一个例子:salt:47998d63768aa877,密文:bef36ba826b045a7c5e536a2f7131a6c232eee36,明文:yunstudio2013

下面是java代码:

private static byte[] digest(byte[] input, String algorithm, byte[] salt, int iterations) {

try {

MessageDigest digest = MessageDigest.getInstance(algorithm);

if (salt != null) {

digest.update(salt);

}

byte[] result = digest.digest(input);

for (int i = 1; i iterations; i++) {

digest.reset();

result = digest.digest(result);

}

return result;

} catch (GeneralSecurityException e) {

throw Exceptions.unchecked(e);

}

}

我在js里面是这么干的,但是结果一直不对,代码如下:

//bef36ba826b045a7c5e536a2f7131a6c232eee36

var hash = crypto.createHmac("sha1", “47998d63768aa877”).update(“yunstudio2013”).digest(“hex”);

for (var i = 1; i 1024; i++) {

hash = crypto.createHmac("sha1", “47998d63768aa877”).update(hash).digest(“hex”);

console.log(hash);

}

java怎么实现对密码用SHA-256加密

import java.security.MessageDigest;

public class Test{

public static void main(String[] args) {

String t= "abcd";

try {

MessageDigest md = MessageDigest.getInstance("SHA-256");

md.update(t.getBytes("GBK"));

for(byte b:md.digest())

System.out.format("%02X",b);

} catch (Exception e) {

e.printStackTrace();

}

}

}

=========

88D4266FD4E6338D13B845FCFD209CB9217DA3EF

PHP验证

?php

echo hash('sha256', 'abcd');

88d4266fd4e6338d13b845fcfd209cb9217da3ef

验证无误

java shiro加盐之后怎么反解密

hash函数是一种单向散列算法,这意味着从明文可以得到散列值,而散列值不可以还原为明文。

验证密码的方法是将用户输入的密码与盐值按照加密时使用的hash算法再hash一次,并与数据库中存储的hash值作比较,若两者一致则认为密码正确。

在java中怎么通过md5和salt来修改密码

MD5很简单,有专门的类,自己定义一个加密用的saltKey。

还有自己写简单的加密解密可以用异或算法,一个字符串于某字符异或就加密了,再与这个字符异或又解密了。很简单的算法。不过比较容易破解

java 给密码字段加密

要是你想做得正规些,MD5或SHA1就是最好的选择了。它们至今都还十分安全。没发现有比这两者更好的解决方案。

MD5就是MD5,是一种算法,公开的,唯一的,没有安全的版本和普通的版本之分。大家用的MD5都是一样的。请始终记住,公开的才是安全的。密码学中都有讲的。

为了安全,你可以在MD5加密时,加些盐。举个例,将用户名,密码,和自定义的一些字符串连起来,然后再进行MD5计算。如:MyUsernameMyPasswordSalt。这么长的串是不容易破解的。你甚至可以连续使用两次MD5。

如果你光是对密码MD5加密,则网上有专门的破解工具,对于位数比较小的密码,极易破解,甚至秒杀。。

如何使用java对密码加密 加密方式aes

Java有相关的实现类:具体原理如下

对于任意长度的明文,AES首先对其进行分组,每组的长度为128位。分组之后将分别对每个128位的明文分组进行加密。

对于每个128位长度的明文分组的加密过程如下:

(1)将128位AES明文分组放入状态矩阵中。

(2)AddRoundKey变换:对状态矩阵进行AddRoundKey变换,与膨胀后的密钥进行异或操作(密钥膨胀将在实验原理七中详细讨论)。

(3)10轮循环:AES对状态矩阵进行了10轮类似的子加密过程。前9轮子加密过程中,每一轮子加密过程包括4种不同的变换,而最后一轮只有3种变换,前9轮的子加密步骤如下:

● SubBytes变换:SubBytes变换是一个对状态矩阵非线性的变换;

● ShiftRows变换:ShiftRows变换对状态矩阵的行进行循环移位;

● MixColumns变换:MixColumns变换对状态矩阵的列进行变换;

● AddRoundKey变换:AddRoundKey变换对状态矩阵和膨胀后的密钥进行异或操作。

最后一轮的子加密步骤如下:

● SubBytes变换:SubBytes变换是一个对状态矩阵非线性的变换;

● ShiftRows变换:ShiftRows变换对状态矩阵的行进行循环移位;

● AddRoundKey变换:AddRoundKey变换对状态矩阵和膨胀后的密钥进行异或操作;

(4)经过10轮循环的状态矩阵中的内容就是加密后的密文。

AES的加密算法的伪代码如下。

在AES算法中,AddRoundKey变换需要使用膨胀后的密钥,原始的128位密钥经过膨胀会产生44个字(每个字为32位)的膨胀后的密钥,这44个字的膨胀后的密钥供11次AddRoundKey变换使用,一次AddRoundKey使用4个字(128位)的膨胀后的密钥。

三.AES的分组过程

对于任意长度的明文,AES首先对其进行分组,分组的方法与DES相同,即对长度不足的明文分组后面补充0即可,只是每一组的长度为128位。

AES的密钥长度有128比特,192比特和256比特三种标准,其他长度的密钥并没有列入到AES联邦标准中,在下面的介绍中,我们将以128位密钥为例。

四.状态矩阵

状态矩阵是一个4行、4列的字节矩阵,所谓字节矩阵就是指矩阵中的每个元素都是一个1字节长度的数据。我们将状态矩阵记为State,State中的元素记为Sij,表示状态矩阵中第i行第j列的元素。128比特的明文分组按字节分成16块,第一块记为“块0”,第二块记为“块1”,依此类推,最后一块记为“块15”,然后将这16块明文数据放入到状态矩阵中,将这16块明文数据放入到状态矩阵中的方法如图2-2-1所示。

块0

块4

块8

块12

块1

块5

块9

块13

块2

块6

块10

块14

块3

块7

块11

块15

图2-2-1 将明文块放入状态矩阵中

五.AddRoundKey变换

状态矩阵生成以后,首先要进行AddRoundKey变换,AddRoundKey变换将状态矩阵与膨胀后的密钥进行按位异或运算,如下所示。

其中,c表示列数,数组W为膨胀后的密钥,round为加密轮数,Nb为状态矩阵的列数。

它的过程如图2-2-2所示。

图2-2-2 AES算法AddRoundKey变换

六.10轮循环

经过AddRoundKey的状态矩阵要继续进行10轮类似的子加密过程。前9轮子加密过程中,每一轮要经过4种不同的变换,即SubBytes变换、ShiftRows变换、MixColumns变换和AddRoundKey变换,而最后一轮只有3种变换,即SubBytes变换、ShiftRows变换和AddRoundKey变换。AddRoundKey变换已经讨论过,下面分别讨论余下的三种变换。

1.SubBytes变换

SubBytes是一个独立作用于状态字节的非线性变换,它由以下两个步骤组成:

(1)在GF(28)域,求乘法的逆运算,即对于α∈GF(28)求β∈GF(28),使αβ =βα = 1mod(x8 + x4 + x3 + x + 1)。

(2)在GF(28)域做变换,变换使用矩阵乘法,如下所示:

由于所有的运算都在GF(28)域上进行,所以最后的结果都在GF(28)上。若g∈GF(28)是GF(28)的本原元素,则对于α∈GF(28),α≠0,则存在

β ∈ GF(28),使得:

β = gαmod(x8 + x4 + x3 + x + 1)

由于g255 = 1mod(x8 + x4 + x3 + x + 1)

所以g255-α = β-1mod(x8 + x4 + x3 + x + 1)

根据SubBytes变换算法,可以得出SubBytes的置换表,如表2-2-1所示,这个表也叫做AES的S盒。该表的使用方法如下:状态矩阵中每个元素都要经过该表替换,每个元素为8比特,前4比特决定了行号,后4比特决定了列号,例如求SubBytes(0C)查表的0行C列得FE。

表2-2-1 AES的SubBytes置换表

它的变换过程如图2-2-3所示。

图2-2-3 SubBytes变换

AES加密过程需要用到一些数学基础,其中包括GF(2)域上的多项式、GF(28)域上的多项式的计算和矩阵乘法运算等,有兴趣的同学请参考相关的数学书籍。

2.ShiftRows变换

ShiftRows变换比较简单,状态矩阵的第1行不发生改变,第2行循环左移1字节,第3行循环左移2字节,第4行循环左移3字节。ShiftRows变换的过程如图2-2-4所示。

图2-2-4 AES的ShiftRows变换

3.MixColumns变换

在MixColumns变换中,状态矩阵的列看作是域GF(28)的多项式,模(x4+1)乘以c(x)的结果:

c(x)=(03)x3+(01)x2+(01)x+(02)

这里(03)为十六进制表示,依此类推。c(x)与x4+1互质,故存在逆:

d(x)=(0B)x3+(0D)x2+(0G)x+(0E)使c(x)•d(x) = (D1)mod(x4+1)。

设有:

它的过程如图2-2-5所示。

图2-2-5 AES算法MixColumns变换

七.密钥膨胀

在AES算法中,AddRoundKey变换需要使用膨胀后的密钥,膨胀后的密钥记为子密钥,原始的128位密钥经过膨胀会产生44个字(每个字为32位)的子密钥,这44个字的子密钥供11次AddRoundKey变换使用,一次AddRoundKey使用4个字(128位)的膨胀后的密钥。

密钥膨胀算法是以字为基础的(一个字由4个字节组成,即32比特)。128比特的原始密钥经过膨胀后将产生44个字的子密钥,我们将这44个密钥保存在一个字数组中,记为W[44]。128比特的原始密钥分成16份,存放在一个字节的数组:Key[0],Key[1]……Key[15]中。

在密钥膨胀算法中,Rcon是一个10个字的数组,在数组中保存着算法定义的常数,分别为:

Rcon[0] = 0x01000000

Rcon[1] = 0x02000000

Rcon[2] = 0x04000000

Rcon[3] = 0x08000000

Rcon[4] = 0x10000000

Rcon[5] = 0x20000000

Rcon[6] = 0x40000000

Rcon[7] = 0x80000000

Rcon[8] = 0x1b000000

Rcon[9] = 0x36000000

另外,在密钥膨胀中包括其他两个操作RotWord和SubWord,下面对这两个操作做说明:

RotWord( B0,B1,B2,B3 )对4个字节B0,B1,B2,B3进行循环移位,即

RotWord( B0,B1,B2,B3 ) = ( B1,B2,B3,B0 )

SubWord( B0,B1,B2,B3 )对4个字节B0,B1,B2,B3使用AES的S盒,即

SubWord( B0,B1,B2,B3 ) = ( B’0,B’1,B’2,B’3 )

其中,B’i = SubBytes(Bi),i = 0,1,2,3。

密钥膨胀的算法如下:

八.解密过程

AES的加密和解密过程并不相同,首先密文按128位分组,分组方法和加密时的分组方法相同,然后进行轮变换。

AES的解密过程可以看成是加密过程的逆过程,它也由10轮循环组成,每一轮循环包括四个变换分别为InvShiftRows变换、InvSubBytes变换、InvMixColumns变换和AddRoundKey变换;

这个过程可以描述为如下代码片段所示:

九.InvShiftRows变换

InvShiftRows变换是ShiftRows变换的逆过程,十分简单,指定InvShiftRows的变换如下。

Sr,(c+shift(r,Nb))modNb= Sr,c for 0 r 4 and 0 ≤ c Nb

图2-2-6演示了这个过程。

图2-2-6 AES算法InvShiftRows变换

十.InvSubBytes变换

InvSubBytes变换是SubBytes变换的逆变换,利用AES的S盒的逆作字节置换,表2-2-2为InvSubBytes变换的置换表。

表2-2-2 InvSubBytes置换表

十一.InvMixColumns变换

InvMixColumns变换与MixColumns变换类似,每列乘以d(x)

d(x) = (OB)x3 + (0D)x2 + (0G)x + (0E)

下列等式成立:

( (03)x3 + (01)x2 + (01)x + (02) )⊙d(x) = (01)

上面的内容可以描述为以下的矩阵乘法:

十二.AddRoundKey变换

AES解密过程的AddRoundKey变换与加密过程中的AddRoundKey变换一样,都是按位与子密钥做异或操作。解密过程的密钥膨胀算法也与加密的密钥膨胀算法相同。最后状态矩阵中的数据就是明文。